Alabama Statewide Math Contest - Round 1 Division Two

University of North Alabama

April 15, 2023

Scoring

Scoring

$$
\begin{array}{rr}
0: 00-0: 30 & 10 \text { points } \\
0: 31-1: 00 & 8 \text { points } \\
\text { 1:01-1:30 } & 6 \text { points } \\
1: 31-2: 00 & 4 \text { points }
\end{array}
$$

If the first person to answer is correct, they receive 2 Bonus Points.

Rules

Rules

1. Answers must be in answer box provided to be counted. Units such as cm, in, etc. are not necessary.
2. Fractions must be reduced. Improper fractions are acceptable.
3. The numbers π and e must be left as such.
4. Complex numbers must be put into $a+b i$ form.

Rules

Rules

5. Answers with radicals must be simplified. Denominators must be rationalized.
6. Exponents should be positive.
7. Answers involving trigonometric functions should be simplified as much as possible.
8. $\log (x)$ means $\log _{10}(x)$ and $\ln (x)$ means $\log _{e}(x)$.
9. The time limit for all problems is 2 minutes.

Sample Problem \# 1

Sample Problem

\square

Solve for x in the equation

$$
x^{2}-6 x-3=0
$$

Sample Problem

Answer:

Sample Problem

Answer: $3+2 \sqrt{3}$ and $3-2 \sqrt{3}$.

Round 1

Geometry

Geometry Question \# 1

Geometry Question \# 1

A right circular cylinder with a height of 6 has a surface area of 54π. Find its volume.

Geometry Question \# 1

Answer:

Geometry Question \# 1

Answer: 54π

Geometry Question \# 2

Geometry Question \# 2

Points A, B, C and D are on the circle, with secant lines $\overline{A C}$ and $\overline{B D}$ intersecting at point E. If $m B C=60^{\circ}$ and $m \angle B E C=50^{\circ}$, find $m \angle E C D$, in degrees.

Geometry Question \# 2

Answer:

Geometry Question \# 2

Answer: 20°

Round 1 Algebra II

Algebra II Question \# 3

Algebra II Question \# 3

If $x=1$ is a solution to $x^{3}+2 x^{2}-31 x+28=0$, find the larger of the other two solutions.

Algebra II Question \# 3

Answer:

Algebra II Question \# 3

Answer: 4

Algebra II Question \# 4

Algebra II Question \# 4

If a and b are solutions to the equation $(x-1)(x+1)=8$, find the value of $a b$.

Algebra II Question \# 4

Answer:

Algebra II Question \# 4

Answer: -9

Round 1

Comprehensive Part 1

Comprehensive Part 1 Question \# 5

Comprehensive Part 1 Question \# 5

\square
The graphs of $y=x^{2}$ and $y=2 x^{2}-3 x+2$ intersect at points A and B. What is the midpoint of segment $\overline{A B}$?

Comprehensive Part 1 Question \# 5

Answer:

Comprehensive Part 1 Question \# 5

Answer: $\left(\frac{3}{2}, \frac{5}{2}\right)$

Comprehensive Part 1 Question \# 6

Comprehensive Part 1 Question \# 6

If $\sin \alpha=\frac{1}{2}$, find $1-\tan ^{2} \alpha$.

Comprehensive Part 1 Question \# 6

Answer:

Comprehensive Part 1 Question \# 6

Answer:
 2 3

Round 1

Comprehensive Part 2

Comprehensive Part 2 Question \# 7

Comprehensive Part 2 Question \# 7

\square
Let \star be defined by $a \star b=a^{2}+2^{b}$. If $5 \star b=41$, what is b ? Provide your answer as an integer or simplified fraction.

Comprehensive Part 2 Question \# 7

Answer:

Comprehensive Part 2 Question \# 7

Answer: 4

Comprehensive Part 2 Question \# 8

Comprehensive Part 2 Question \# 8

\square
RESET

Write the expression $\frac{8 i}{2-2 i}+3 i-4$ in the form $a+b i$, where i is the imaginary unit.

Comprehensive Part 2 Question \# 8

Answer:

Comprehensive Part 2 Question \# 8

Answer: $-6+5 i$

Round 1

Team

Team Question \# 9

Team Question \# 9

\square
RESET
Find the summation of
Volume of a right square based pyramid with a height of 5 and a base side of length 3 $+$
Measure of an exterior angle in a regular pentagon

Radius of circle defined by $x^{2}+6 x+y^{2}-12 y=4$

Team Question \# 9

Answer:

Team Question \# 9

Answer: 94

Team Question \# 10

Team Question \# 10

\square
A sequence is defined by $a_{n}=a_{n-1}+a_{n-2}+a_{n-3}$ for $n \geq 4$. Suppose $a_{4}=20, a_{5}=36$, and $a_{7}=121$. What is a_{3} ?

Team Question \# 10

Answer:

Team Question \# 10

Answer: 9

End of Round 1

