Alabama Statewide Math Contest - Round 2 Division Two

University of North Alabama

April 15, 2023

Scoring

Scoring

$$
\begin{array}{rr}
0: 00-0: 30 & 10 \text { points } \\
0: 31-1: 00 & 8 \text { points } \\
\text { 1:01-1:30 } & 6 \text { points } \\
1: 31-2: 00 & 4 \text { points }
\end{array}
$$

If the first person to answer is correct, they receive 2 Bonus Points.

Rules

Rules

1. Answers must be in answer box provided to be counted. Units such as cm, in, etc. are not necessary.
2. Fractions must be reduced. Improper fractions are acceptable.
3. The numbers π and e must be left as such.
4. Complex numbers must be put into $a+b i$ form.

Rules

Rules

5. Answers with radicals must be simplified. Denominators must be rationalized.
6. Exponents should be positive.
7. Answers involving trigonometric functions should be simplified as much as possible.
8. $\log (x)$ means $\log _{10}(x)$ and $\ln (x)$ means $\log _{e}(x)$.
9. The time limit for all problems is 2 minutes.

Sample Problem \# 1

Sample Problem

\square

Solve for x in the equation

$$
x^{2}-6 x-3=0
$$

Sample Problem

Answer:

Sample Problem

Answer: $3+2 \sqrt{3}$, and $3-2 \sqrt{3}$.

Round 2

Geometry

Geometry Question \# 1

Geometry Question \# 1

\square
Regular hexagon $A B C D E F$ has diagonals $\overline{A D}$ and $\overline{B E}$ meeting at a point G. What is $m \angle B G D$, in degrees?

Geometry Question \# 1

Answer:

Geometry Question \# 1

Answer: 120°

Geometry Question \# 2

Geometry Question \# 2

\square
Points A, B, C, and D are on the circle, and $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect at point P. If $B P=2, C P=3$, and $D C=5$, what is $A B$?

Geometry Question \# 2

Answer:

Geometry Question \# 2

Answer: 10

Round 2 Algebra II

Algebra II Question \# 3

Algebra II Question \# 3

Find all solutions to $\sqrt{x^{2}-4}+2=5$.

Algebra II Question \# 3

Answer:

Algebra II Question \# 3

Answer: $\sqrt{13}$ and $-\sqrt{13}$

Algebra II Question \# 4

Algebra II Question \# 4

In the following matrix multiplication calculation, find the average value of variables A, B, C, and D.

$$
\left[\begin{array}{rr}
-4 & 7 \\
3 & 6
\end{array}\right]\left[\begin{array}{ll}
9 & 0 \\
1 & 4
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

Algebra II Question \# 4

Answer:

Algebra II Question \# 4

Answer: 14

Round 2

Comprehensive Part 1

Comprehensive Part 1 Question \# 5

Comprehensive Part 1 Question \# 5

Find the units digit of 2^{23}.

Comprehensive Part 1 Question \# 5

Answer:

Comprehensive Part 1 Question \# 5

Answer: 8

Comprehensive Part 1 Question \# 6

Comprehensive Part 1 Question \# 6

Find the value of x for which $\log _{3}(x+1)-\log _{3}(x)=1$.

Comprehensive Part 1 Question \# 6

Answer:

Comprehensive Part 1 Question \# 6

Answer: $\frac{1}{2}$

Round 2

Comprehensive Part 2

Comprehensive Part 2 Question \# 7

Comprehensive Part 2 Question \# 7

RESET

Let $f(x)$ be the piecewise function defined below. Find the sum of all solutions for which $f(x)=7$.

$$
f(x)= \begin{cases}|x+4| & \text { for } x \leq 1 \\ x^{2}+6 x & \text { for } 1<x<6 \\ 2 x-5 & \text { for } x \geq 6\end{cases}
$$

Comprehensive Part 2 Question \# 7

Answer:

Comprehensive Part 2 Question \# 7

Answer: -5

Comprehensive Part 2 Question \# 8

Comprehensive Part 2 Question \# 8

\square
A rhombus has a side length of 5 and an area of 20 . Find the sine of the smallest interior angle of the rhombus.

Comprehensive Part 2 Question \# 8

Answer:

Comprehensive Part 2 Question \# 8

Answer: $\frac{4}{5}$

Round 2

Team

Team Question \# 9

Team Question \# 9

\square
Find the distance between the two solutions to the system of equations

$$
\left\{\begin{aligned}
x+3 y & =y^{2}-4 \\
x+y & =11
\end{aligned}\right.
$$

Team Question \# 9

Answer:

Team Question \# 9

Answer: $8 \sqrt{2}$

Team Question \# 10

Team Question \# 10

\square
An equilateral triangle is inscribed in a circle, which is inscribed in a square. If the area of the square is 8 , what is the area of the equilateral triangle?

Team Question \# 10

Answer:

Team Question \# 10

Answer:

End of Round 2

