# Table of Contents

## Acknowledgments

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1.1</td>
</tr>
<tr>
<td>History</td>
<td>1.1</td>
</tr>
<tr>
<td>Plan Philosophy and Purpose</td>
<td>1.2</td>
</tr>
</tbody>
</table>

## Master Plan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision</td>
<td>2.1</td>
</tr>
<tr>
<td>Development of the Plan</td>
<td>2.2</td>
</tr>
<tr>
<td>Master Plan</td>
<td>2.5</td>
</tr>
<tr>
<td>Functional Organization</td>
<td>2.9</td>
</tr>
<tr>
<td>Circulation</td>
<td>2.11</td>
</tr>
<tr>
<td>Wayfinding</td>
<td>2.16</td>
</tr>
</tbody>
</table>

## Implementing the Plan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation</td>
<td>3.1</td>
</tr>
<tr>
<td>New Academic Complex</td>
<td>3.2</td>
</tr>
<tr>
<td>Three Residential Villages</td>
<td>3.3</td>
</tr>
<tr>
<td>Student Life Center</td>
<td>3.5</td>
</tr>
<tr>
<td>Natural Open Space</td>
<td>3.6</td>
</tr>
<tr>
<td>Implementation Sequence</td>
<td>3.7</td>
</tr>
</tbody>
</table>

## Design Guide

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4.1</td>
</tr>
<tr>
<td>Campus Design Principles</td>
<td>4.4</td>
</tr>
<tr>
<td>Contextual Design</td>
<td>4.5</td>
</tr>
<tr>
<td>Architectural Design</td>
<td>4.13</td>
</tr>
<tr>
<td>Site and Landscape Design</td>
<td>4.17</td>
</tr>
<tr>
<td>Sustainable Design</td>
<td>4.26</td>
</tr>
</tbody>
</table>

## Glossary

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
</tr>
</tbody>
</table>
University of North Alabama

The Board of Trustees of the University of North Alabama
Steven F. Pierce 2008-2010 President Pro Tempore
Billy Don Anderson
Richard H. Cater
Lisa G. Ceci
John B. Cole
Ronnie G. Flippo
Rodney L. Howard
Harvey F. Robbins
Libby Watts
Bob Riley
Governor, State of Alabama
Dr. Joseph Morton
Superintendent of Education, State of Alabama
Samuel Thigpen
Student Government Association President

Administration
President William G. Cale, Jr.
Vice President and Provost John G. Thornell
Director of Facilities Administration and Planning Michael Gautney

City of Florence
Mayor Bobby Irons
City Planning Director Melissa Bailey

And a special thank you to the faculty, staff, students, alumni and friends of the University who provided valuable input to the campus master planning process through the online survey, interviews, and plan reviews.
About one year ago it became quite clear that the University of North Alabama had experienced so much growth and change in such a short interval of time that the existing facilities plan no longer served our needs as we contemplated the future. Thus, we engaged in a process of analysis and discovery with the firm of KPS Group, Inc. from Birmingham, Alabama, to examine how the future of UNA might best express itself. There were many caveats in this process, not the least of which was to maintain (or even improve) the beauty, intimacy, and campus feel that have been the hallmarks of the university for nearly two centuries.

The document before you is the result. In it are ideas, not directives, which collectively will guide us to grow in harmony with our neighbors, with our own structures, and with the value of preservation of place that is felt by everyone who has come to this campus. We have looked far into the future, perhaps two decades, and envisioned a campus that is certainly different from today’s, but not so different that it would not be immediately recognized as UNA. We have coordinated our work with the City of Florence so that the strength of our relationship has been enhanced and enriched by the process.

The Board of Trustees and administration of UNA that are in place today, as this Campus Master Plan is adopted, look forward to taking the first steps toward implementing the plan and offering to our students an exceptional experience that will be with them all their lives.

Sincerely yours,

William G. Cale, Jr., President

June 11, 2010
History

The University of North Alabama was founded in 1830. It is the oldest public university in the state and, in 1873, it became one of the first co-educational colleges in the United States. The university is located in Florence, Alabama north of the Tennessee River. The 1929 Campus Master Plan was developed by the renowned design firm of the Olmsted Brothers and has maintained its picturesque, pedestrian campus of shaded walkways, manicured gardens, fountains and sculptures. The campus forms a dramatic, northern terminus to historic Downtown Florence and is situated among neighborhoods listed on the National Register of Historic Places. The campus is also noted for its many historic buildings, having three antebellum structures—Wesleyan Hall, Rogers Hall and Coby Hall—individually listed on the National Register.

In 1967 the state legislature placed the college under the authority of a Board of Trustees. For a short time the school became known as Florence State University but was renamed the University of North Alabama to reflect its regional stature.

Plan Philosophy and Purpose

This plan is an update to the 2003 Campus Master Plan and provides a long term, campus-wide vision for the maintenance, improvement and continued development of the UNA campus. The plan sets clear direction for coordinated decision-making and action to accomplish University goals within the physical environment of the campus.

This framework looks far into the future, addressing major campus issues and opportunities, not simply into the next several years. In this way, the university may use the plan as a guide to take necessary steps in intervening years to accomplish short-term goals while contributing to the development of the campus of the future.

The overall guidance system of the planning process consists of four primary aspirations. Followed carefully and with attention to detail as well as intent, these aspirations will enable the university to grow the campus in ways that support the university’s mission while building upon and maintaining the campus’ rich physical heritage.

Philosophy

• **Unique.** The campus should reflect the nature and character of the university—the institution and its role in the nation, region, state and its home community of Florence.

• **Logical.** The campus should be a logical, physical expression of the university’s mission and purpose.

• **Respectful.** The campus should account for, respect and capitalize on its physical organization and the strong traditions of place that it has built through the past 180 years.

• **Customer-oriented.** The campus should serve its users and constituents, including residents of the Shoals Area.
Purpose

The campus master plan was prepared with the intent of addressing several key issues pertinent to the UNA campus:

• **Open Space System.** An expanded open space system will physically unify the campus, accommodate recreational uses, and foster social, cultural and intellectual interactions. Extending outward from the open spaces envisioned in the Olmsted Plan, natural areas will be recaptured. The campus-wide open space network will increase walkability and broaden the natural beauty of the campus.

• **Transition to a Residential Campus.** The University envisions an environment in which most students will choose to live on campus. Historically, UNA has developed as a commuter campus. Accomplishing this goal will entail growing and diversifying residential options and integrating amenities on-campus that foster a convenient, attractive and well-rounded student living-learning experience.

• **Walkable Campus.** UNA began as a pedestrian-oriented campus. But like many campuses and many communities, the car became a staple of everyday life. In the interests of growing greener and of building a campus environment that encourages interaction and learning, the campus will reshape itself through reinvestment and growth focused on its core, while utilizing and accommodating multiple modes of transportation.

• **Activity Centers.** In support of its evolution to a more walkable, residential campus, a variety of student life amenities will be incorporated into a system of activity centers, or hubs around campus.

• **Enhancing the Beauty of the Campus.** Making the campus more beautiful is not solely about appearances. Providing a high-quality physical environment is essential to the development of students. It involves respecting and taking greater advantage of the campus’ natural setting and preserving and expanding on the qualities and traditions of its historic landscape and architecture. New buildings and open spaces will aspire to the quality of the historic campus core. Conservation and restoration of the natural landscape will provide recreational opportunity and instill respect for the environment.
University Strategic Plan

The “campus” in many ways acts as a physical mirror of the “university” as an organization. Therefore, this plan update was prepared with attention to the university’s overall mission and vision as captured in the University of North Alabama Strategic Plan. The regularly updated strategic plan defines the mission and vision of the university. The university’s philosophy and desires embedded in the strategic plan not only called for but also provided direction to the development of this plan.

from the University of North Alabama

Strategic Plan 2007-2012

Mission

...engaging in teaching, research, and service to provide educational opportunities for students, an environment for discovery and creative accomplishment, and a variety of outreach activities meeting the needs of our region in the context of a global community.

Vision

We commit ourselves:

- to design and offer a rich undergraduate experience;
- to respond to the many educational and outreach needs of our region, including the provision of high quality graduate programs in selected disciplines;
- to provide an extracurricular environment that supports and enhances learning;
- to provide a global education and participate in global outreach through distance learning programs; and
- to foster a diverse and inclusive academic community.

We promote global awareness by offering a curriculum that advances understanding of global interdependence, by encouraging international travel, and by building a multi-national student population. We pledge to support and encourage intellectual growth by offering primarily small, interactive classes taught by highly educated professionals, and through mentoring, internships, and other out-of-class educational opportunities.

Goals

- To offer high quality programs;
- To build and maintain a student-centered university;
- To promote and celebrate diversity;
- To foster a strong university community; and
- To enhance and support regional development and outreach.
Vision

Considering the potential needs of the UNA campus for perhaps the next two decades, the Campus-Wide Vision provides what could be considered an ultimate build-out of campus buildings and facilities. The vision is organized about a permanent open space system whose quality and character respects the history, as well as the aspirations, of the University of North Alabama.

The vision of the campus consciously reinforces several critical aspects of the American campus tradition. It defines an academic village possessing a strong identity, sense of place and legibility—a place that is readily accessible to pedestrians, who are thus available to one another. This living-learning place is framed and supported by buildings that have traditional relationships between one another and to adjacent open spaces, which in turn provide a variety of opportunities to support student life. This all conforms to the primary aspirations of the planning process, which were strongly supported by comments and responses gathered during campus interviews and from the on-line survey.

Goals

The University of North Alabama, through implementation of its overall vision, intends to maintain, enhance and extend the high quality physical environment of the campus core to all parts of the campus and to integrate that quality into the life of surrounding neighborhoods insofar as practicable. To accomplish this, the vision is mindful of the following goals:

- **Preserve and enhance** the best of the campus core, its landmark structures and facilities, engaging open spaces and sense of place.
- **Adapt and insert** buildings, facilities and accessibility improvements carefully to accommodate innovation and expansion.
- **Regenerate** the vitality of the campus through an overall, phased strategy that invites the broader University Community to support successful implementation, over time.
- **Integrate** new construction through incremental infill based on traditional building patterns appropriate for the physical environment, augmented by the quality landscape character for which the university is widely known.
- **Continue** the university’s history of cooperation with the City of Florence and support for implementation of the city’s Comprehensive Plan and West Florence Neighborhood Plan.

Bibb Graves Hall, named after the state’s 38th governor, is the main administration building on campus. David Bibb Graves is known as Alabama’s “education governor”, having raised taxes on public utilities, railroads, and coal and iron companies to build schools and other public facilities throughout the state, increase wages for teachers and support a host of other investments to improve the quality of life for state residents.
Development of the Plan

This Master Plan update builds upon the university’s 1929 plan and the best characteristics of today’s campus—its natural environmental setting, attractive buildings and usable open spaces, in combination with the physical bond it has developed with its host community.

Historic Development Pattern

After moving north of the Tennessee River to Florence from LaGrange Mountain, the university opened its doors as Florence Wesleyan College in 1855. Florence had developed in the early 1800s due largely to its river access at the head of navigation at Muscle Shoals.

The college located near Florence’s present-day downtown. Both grew atop the higher elevations of the city. The campus developed initially around Morrison and Wesleyan Avenues with the erection of Wesleyan and Rogers Halls.

In the 1920s the firm of acclaimed landscape architect Frederick Law Olmsted prepared a pivotal master plan for the campus. The picturesque arrangement of buildings, generous open spaces, and shaded walkways for which the campus is known arose from the designs originally proposed in the Olmsted plan.

Over time the campus expanded to the north, east, and west with North Pine Street becoming a major spine. The Kilby elementary laboratory school and the bulk of the university’s athletics and recreational facilities developed west of Pine Street. Over the years campus development took on more contemporary characteristics in the arrangement and design of new buildings such as the Fine Arts Center, Flowers Hall and several mid-rise residence halls.

Participation in Crafting the Plan

The plan came together through an iterative process with robust participation across the university community. Through presentations and interactive meetings, one-on-one interviews and on-line surveys, students, faculty, university staff and community representatives were engaged in the process to develop and detail a new physical vision for the growing and ever-improving UNA campus.

Aerial photo of campus
Natural Systems

While the historic core of the campus is relatively flat, as the university grew, it extended to the north and west taking in land of much more varied topography. Areas of the campus near Cypress Creek lie about 150 feet below the higher elevations on campus.

A stream arises from springs beneath the campus and emerges parallel to Waterloo Road and County Road 14 eventually merging with Cypress Creek to the west. While there is only a small portion of floodplain (at the west end of campus) associated with the draw along Waterloo Road, the intensive terrain poses a challenge to campus expansion. One intersection (Waterloo Road and North Pine Street) and several pedestrian crossings are grade-separated, or bridged, to mitigate topographic constraints. As the campus continues to develop, these conditions will present both problems and opportunities for maintaining a physically continuous, walkable university environment.

Community Context

The city and university have agreed that it is essential for both to continue to maintain and plan for appropriate physical relationships, especially where campus facilities sit adjacent to community neighborhoods and business areas. Growth and improvement strategies and plans of both take into account and respect these relationships.

To the south and southeast of the campus is the heart of the city, Downtown Florence. Historic, single-family residential neighborhoods abut the remaining edges of the campus. The historic districts bounding the campus—Seminary-O’Neal, Wood Avenue, College Place, Sannoner, Locust Street, and Walnut Street—are an important factor in planning at the campus’ edges. Both the university and its host city value the historic architecture that lend the campus and the community an attractive, unique setting. Currently, the campus extends into the Locust Street, Sannoner, Seminary-O’Neal and Wood Avenue districts.
Illustrative Master Plan
Master Plan

The Master Plan adheres to the traditional principles upon which the university originally developed. It reveals how the campus might be in twenty or so years assuming continued growth and investment in academics, housing, and campus amenities and support facilities.

New facilities are positioned around the campus to create and reinforce a unifying network of open spaces; a strong, central academic campus; optimal internal accessibility; and appropriate transitions at the community edge. The historic campus core acts as a hub around which the university's many functions are organized. The core is reserved primarily for academic and administrative uses while new student life functions will be strategically integrated around the core to increase activity and convenience.

Bicycle and pedestrian improvements work together with the campus' functional organization so that students, staff, and visitors will find it increasingly convenient to move about the campus. Vehicular access, parking facilities, and an improved wayfinding system provide easy arrival and departure while supporting and encouraging safe, non-vehicular travel within the campus. The strategic arrangement of buildings and improved bicycle and pedestrian systems also lay the foundation for expansion of the campus transit system.

The Campus Master Plan focuses on several major elements: development and conservation of a diverse open space system, modernization and expansion of student housing, integration of facilities and spaces that enhance student life on campus, and growth of academic facilities.

Open Space System

In the same way that buildings shape lives, so do open spaces—whether natural or man-made. UNA is renowned for its lush campus core of meandering and tree-shaded paths. It is the intent of the university to capture that magic in those parts of the campus that have developed since the Olmsted Plan and those that are still to be developed. The campus open space system is made up of cultural, recreational and natural open spaces, each with unique functions and designs that serve both the campus overall and the activities that occur within and alongside them.

Harrison Plaza, dedicated in 2002, provides a dramatic and beautiful gateway into the campus. A hub of major campus pedestrian routes, the plaza is located between Bibb Graves Hall, Keller Hall and the George H. Carroll Lion Habitat. Construction of the plaza was the centerpiece to a large renovation project funded through a combination of federal grants and donations from friends and alumni, including 1955 graduate Laura McAnally Harrison.
The campus open space system expands on the original open space design created by the Olmsted Plan. Taking advantage of the campus’ challenging topography, the open space system links the campus core to the more northern and western extents of the campus. The open space plan is comprised of three primary types of space: cultural (light green), natural (dark green) and recreational (blue-green).

**Cultural Open Spaces.** These range in size from the ubiquitous open spaces in the historic campus core to residential quadrangles, common lawns, building plazas, and intimately-scaled courtyards. Cultural open spaces serve a variety of functions including pedestrian and bicycle circulation, gathering and interaction, passive recreation and relaxation, and campus events both large and small.

Programmatic intentions and cues from their natural and built context influence whether these spaces are more formal or picturesque in design. Formal spaces, such as the traditional campus quadrangle, involve simple geometries organized around strong visual axes. An ordered, and sometimes symmetrical, arrangement of buildings, paths and plantings provides a sense of enclosure and unity. The placement of important buildings, landmarks or other special features at the terminus of an axis or at the intersections of axes adds drama and beauty. Picturesque spaces, such as those in the historic campus core, are more natural or organic in form, involving more relaxed and subtle arrangements of buildings, winding paths and lush greenery. Picturesque designs require less manipulation of sites with complex topography and can, in fact, take best advantage of them.
**Natural Open Spaces.** This chain of spaces forms a greenway that follows the natural draw crossing the campus from east to west. The greenway traverses the picturesque, cultural spaces in the heart of campus, pivoting at Harrison Plaza and continuing downhill. Passing under the Pine Street bridge, it transforms into a more naturalistic space following along the stream through a previously developed area that has been recaptured in this plan as a green space and trail. This wide, park-like swath provides ample room for pick-up games, picnicking, relaxation, and general enjoyment of the outdoors. Other improvements include a primary trail, secondary footpaths, small pavilions seating areas, and similar amenities. Pedestrian bridges are placed along the draw at intersections with heavily traveled routes to allow convenient, safe crossing.

**Recreational Open Spaces.** Facilities for indoor and outdoor recreational and athletic uses are located on the west side of campus. These locations are intended for active recreational uses, which require specifically designed and dedicated facilities, such as ball fields. These open spaces will be designed to meet the particular requirements of the recreational uses they house but will also be designed and landscaped to serve as an appropriate buffer to the neighborhoods adjacent to them.

**Student Life**

To provide students with a complete campus life experience, functions, open spaces and amenities that support and generate activity and interaction are strategically located around campus. After all, what happens in the classroom is only part of the intellectual, social and psychological growth of students. Shopping, dining and recreational facilities will be enhanced or added in convenient, central and highly traveled locations to attract the greatest amount of activity. And, each university building—whether residential or academic—will include common areas, appropriate to the building’s primary function, that support living, learning, and playing.

---

The diagram above illustrates the campus’ most heavily travelled vehicular (blue) and pedestrian (red) routes in relation to the three planned residential villages (yellow), major parking facilities (purple), and the campus core. The diagram further illustrates potential locations (asterisks) for dining, retail or similar functions that support and enhance student living on campus.
Residential

Expanded and enhanced student housing opportunities are critical elements for the conversion of UNA from a commuter campus to a residential campus. Investments in new student housing are concentrated in three locations around campus. Future residential construction is to be planned and designed to form “residential villages”. Each village will consist of multiple residential buildings sited in such a way as to have strong, positive relationships with one another, their context—both campus and community—and adjacent open spaces and streets. These residential villages will provide a variety of attractive, comfortable settings for increased on-campus living.

Academic Expansion

New academic buildings will be added to accommodate university growth. These new facilities will provide modern, state-of-the-art teaching facilities and contribute to the walkable, residential campus environment envisioned within this plan. Academic functions are focused in and adjacent to the campus core, including a new complex west of Pine Street. Maintaining academics, the primary day-to-day destinations for campus users, toward the center of the campus maximizes opportunities for walking and bicycling by shortening the distance of most trips. This, in turn, reduces the need for central parking facilities.
Organizing university functions—academics, housing, athletics and recreation, and administrative and support functions—is necessary to make the most efficient use of university lands and to assure desirable relationships from one building or open space to the next. This coordination can foster learning and interaction while making it easier to get around on campus.

Over time, as new buildings are built and existing ones are updated or replaced, in accordance with the University Design Guidelines, the pattern of buildings and their uses will improve cohesiveness and add definition to the planned open space system.

Campus functions are to be located to increase bicycle and pedestrian activity by minimizing the distances that students, faculty and staff must travel on campus during a normal day. This supports and is supported by effective parking strategies.

**Functions**

**Academic Campus.** The academic campus (shown in red) is intended primarily for learning and for selected supporting and campus life functions essential to learning. Generally, all academic facilities are located in and around the campus core, which is within a 5-10 minute walk of campus residences. Collocating academic functions also enables synergy, providing an environment conducive to interaction, creativity, and knowledge-sharing.

**Campus Housing.** Student living (shown in yellow) is located at the edges of the core academic campus. These areas are reserved for expansion of campus housing and student life functions—in an environment supportive of learning.

**Campus Life Center.** This area is reserved primarily for student life functions, including retail, dining, and spaces for study and interaction.
Space Assessment: Current and Future

The space assessment for the Campus Master Plan included most of the departments located on the campus. The current space assigned to these departments included in the assessment totals 835,729 assignable square feet.

The assessment produced formula-based space needs calculations for each department. Based on current conditions the University’s calculated space need was determined to be about 823,650 assignable square feet or a net aggregate surplus of nearly 12,100 assignable square feet.

A future space need was also developed to the year 2020 based on an overall enrollment growth rate of approximately 40%. To accommodate this growth will require approximately 945,900 assignable square feet (net aggregate shortfall of almost 110,200 assignable square feet, which is 13.2% more than the current inventory). In 2010, three of the four colleges have a net space shortage. By the year 2020 this situation will continue, with Arts and Sciences having the greatest deficit.

Assembly, Support, and Athletic/Recreation have the greatest current needs (deficits). Much of the need for assembly space is for adequate performance and recital space for the Department of Music. With projected enrollment growth Support, Assembly and Athletic/Recreation space will continue to be the areas of greatest need. Instructional Labs and Library space also show some significant future shortfalls. Student service space types will be areas of need as well.

Based on the calculated square footage using the recommended guidelines, the University’s existing classroom space is sufficient to meet the current demand, as well as accommodate planned enrollment growth. Nevertheless, the overall results of the space assessment found the University’s existing facilities are short by about 16,100 square feet to meet the academic demands of the current enrollment, plus there are student services areas that are also deficient.

By the year 2020, given the planned enrollment growth of 40%, there will be deficit of over 55,100 assignable square feet in the academic colleges, and the current shortages in student service space will increase significantly. The latter include space for athletics and recreation, food facilities, merchandising, exhibition, health care facilities, and assembly.

Academic, offices and conferencing functions are also appropriate in this central part of the campus. This area is intended as a hub for student life, in the same way that Downtown Florence is the heart of the university’s host community. Campus life facilities will also be included in each of the emerging student villages arrayed around the campus.

Athletics and Recreation. Athletics and recreational functions (shown in green) include active recreation—sports and other activities that require specialized facilities and organization—and passive recreation—jogging, picnicking, and similar activities. The bulk of these functions are located in the northwestern corner of the campus, easily accessible from North Pine Street. Passive recreational activities of various kinds also take place throughout the campus open space system.

Administrative and Support Functions. Most university administration and support functions (shown in blue) remain in the heart of campus. Some will move strategically to other parts of campus where they may best serve their particular functions.
Improving campus accessibility and circulation is essential when considering the university's intentions for future growth and particularly the expansion of on-campus living. Properly locating new buildings on campus according to their function is the first step in addressing this issue and ensuring that campus development mitigates rather than increases circulation problems. Comprehensive improvements to the pedestrian and bicycle circulation systems on campus will make such modes of travel safer and more attractive. The location of some parking facilities toward the edges of campus—rather than in the center—also will help the campus absorb new buildings, users and the inevitable increase in cars. Finally, enhancing the campus transit system complementary to campus growth initiatives will assure another effective alternative for moving about the campus.

**Pedestrian Circulation**

Given the rolling topography of the campus, maintaining an accessible, safe and efficient system for getting pedestrians across campus is challenging. But building a highly walkable campus is both possible and necessary.

An effective pedestrian circulation requires a combination of three major elements: a confluence of multiple activities or destinations in proximity to one another and a physical environment that is designed with pedestrian convenience in mind.

**Proximity.** Academic buildings are the primary campus destinations and therefore are clustered together as much as possible close to the center of campus. With this arrangement, most campus facilities, particularly campus housing areas, are within a comfortable five-minute walk of the academic campus.

**How far is too far to walk?**

A five-minute walk, or about one-quarter mile, is commonly accepted as an average distance most people are willing to walk to their destinations given a conducive walking environment. At UNA a five-minute walk is more equivalent to one-fifth mile or slightly less due to the campus’ hilly topography. A more strenuous ten-minute walk, about a half mile, is considered an upper limit for the average walker. For longer trips, people are more likely to drive, bicycle or use transit rather than walk. As proposed in this Campus Master Plan, all academic buildings will be under a ten-minute walk from the furthest edges of campus.
Diversity of Uses. To further increase pedestrian accessibility and convenience, campus dining, retail and recreational facilities are located either in the center of campus or along the major routes between the academic campus and the areas from which the majority of pedestrian trips begin—student residences and parking facilities.

Design. The most complex issue for improving the pedestrian system involves the planning and design of pedestrian routes, buildings, and open spaces to maximize pedestrian safety and convenience. Physical design issues are especially important because of UNA’s hilly environment. The alignment of pedestrian routes is planned and must be designed to avoid steep grades. Buildings and their entrances must be coordinated with adjacent pedestrian routes to minimize separation and changes in elevation. Changes necessary to reduce conflicts with vehicles are incorporated in the plan and must also be addressed through careful design. This is done by reducing instances in which driveways cross sidewalks, installing well-designed crosswalks at appropriate locations, and assuring good sight distances for both motorists and pedestrians wherever their paths meet.
Primary Bicycle Routes

Bicycle Circulation

Getting around campus by bicycle will be improved in much the same way as for walking. Locating a mix of destinations close together allows the cyclist the same convenience necessary to pedestrians. A built environment designed for pedestrian accessibility supports bicycle access as well. There are however a few improvements called for that are unique to the needs and challenges of bicycle access. Most origins and destinations on campus are placed at or near the same elevation to reduce the impact of UNA’s topography. There must be adequate storage for bicycles provided at origins and destinations. And, bicycle routes must be distinguished from pedestrian routes, in some cases running on-street in the form of dedicated bicycle lanes. Introduction of bicycle lanes on existing streets may require a reduction in on-street parking.

Vehicular Improvements

Vehicular Access and Circulation

Several improvements will be made to improve vehicular circulation within and around the campus. These include intersection realignments and the redesign and rerouting of some existing streets. The primary strategy is to keep the bulk of vehicular trips at the edges of campus to maintain a safe, pedestrian-oriented core. Necessary service and emergency access will continue to be maintained, and upgraded where needed, in these central locations.

Vehicular access and circulation improvements include:

- Larimore Street, west of campus, will extend to Oakview Circle, providing an essential connection between the center of campus and this future student housing location.
- Portions of Pine Street, East Irvine Street, and Circular Road will be redesigned for traffic calming and pedestrian safety. These “road diets” will recapture excess right-of-way to be used for streetscape enhance-
Parking

Parking is located generally toward the edges of the campus. Thus, the campus core becomes a calmer, safer environment especially for walking and bicycling. Those arriving by car from off-campus will typically park at the edge and travel into the campus on foot or bicycle or by transit. Several small parking, loading and drop-off areas are maintained in strategic locations.

A substantial increase in student housing will require a commensurate increase in parking. Residential parking is provided on-site in each of the three proposed residential growth areas.

Two parking decks are located adjacent to the campus core. An existing deck sits immediately north of the campus core on Circular Road. The second is proposed southwest of the campus core, between the Communications Building and Norton Auditorium. The new deck will absorb parking demand in that area of the campus and provide additional capacity to support campus growth. A third deck planned on the west side of campus provides parking for athletics, events and nearby student housing.
Transit

As demand warrants, the University intends to expand and enhance its current transit system and extend its operating schedule to serve the increasing number of people on campus. The shuttle bus system includes three routes—north, east, and west—with designated stops and ten minute headways. The shuttle routes are extensive enough currently to provide access to Downtown Florence and some neighboring residential areas. Improvements to the pedestrian environment are planned to support the continued, successful operation of the system. One shuttle route extend operating hours to provide transit service for campus activities that continue into the evening, such as the library. The nighttime route will be adjusted from the normal daytime loop to optimize coverage. A transfer point near Circular Road and the new student activities plaza, where each of the three existing routes converge.

Service and Emergency Access

Access to buildings for maintenance, deliveries, and emergency response is provided through streets and internal drives. Some drives in the campus core will be maintained for service access though associated parking may be moved. Pedestrian and bicycle paths may be designed to accommodate service and emergency vehicles in this area. These multi-use paths will serve primarily foot traffic but will include additional width to suit occasional use by vehicles. In some locations, fire truck access may be necessary or desirable. These larger vehicles need greater width than typical service and maintenance vehicles and the paths on which they are intended to run will be sized accordingly.
Wayfinding

Wayfinding is a navigation process through which visitors use visual cues from their surroundings to determine, often quickly, how to get from one place to another. The campus has many destinations, and students, faculty, staff, and visitors move about the campus in a variety of ways—by car, on foot, or on bike—along public streets, internal drives, sidewalks, and other paths. The design of the campus environment will support wayfinding among the various modes of travel through the design of streets and paths, the arrangement of buildings and their entrances in relation to circulation routes.

Signage is a critical environment in the wayfinding system but should not be overused. A proliferation of signs leads to visual clutter, which detracts from the appearance of the campus and can cause confusion for those unfamiliar with the campus.

Gateways

Gateways are the first experience of the campus for newcomers. They are a threshold through which visitors enter, and signal their passage into the campus from the surrounding community. Because of the many public streets that traverse the campus, there are many points through which the public may enter or pass through the campus. The buildings, open spaces, signage, and other environmental elements of the campus should be well-designed and maintained in these locations so that a quality image of the university and campus is always presented to the public.

Certain gateways are of particular importance to the image of the campus. The primary public gateway—the “front door”—into campus is the intersection of East Irvine Avenue and North Court Street. This is the historic and symbolic entrance to the campus. Here, historic Rogers Hall sits on the axis of North Court Street, providing an attractive terminus to the entrance from Downtown Florence. Streetscape and intersection improvements and new signage will enhance the gateway function, directing newcomers to nearby visitor parking, calming vehicular movements along Irvine, and improving on the already strong image of the university from this viewpoint.
Other key gateways are:

- **Irvine Avenue at Pine Street.** This location will be improved as a result of streetscape improvements to Pine and Irvine. Construction of a black box theater on the northeast corner of the intersection will add a new architectural element to the gateway.

- **Cedar Street at Waterloo Road and Stewart Avenue at Circular Road.** This gateway will be improved by transforming the existing, large and complex intersection into two simpler T-intersections. This reconfiguration will incorporate an improved streetscape design for the two intersections and the street segment connecting them.

- **Pine Street at West Hawthorne Street.** Gateway improvements include the redesign of Pine Street. Reinvestments and expansion of student housing on the east side of Pine Street create opportunities to build a stronger architectural image at this gateway.

- **Willingham Avenue at Circular Road.** Redesign of this intersection will improve traffic safety and wayfinding by moving driveways away from the intersection and landscaping to screen adjacent parking.

**Vehicular Wayfinding**

**Image Corridors.** Major through streets—Irvine Avenue, Pine Street and Circular Road—act as “image corridors” for the campus, conveying a visual impression of the university to a large number of visitors and passersby each day. In addition to this, these streets are also essential as part of the campus wayfinding system.

**Decision Points.** Most of the major decision points for navigating the campus by car occur along these routes. Directional signage will be installed along these streets to assist visitors in finding their way to several major destinations on campus. As mentioned previously, Irvine Avenue and Pine Street are both slated for streetscape improvements that will enhance their appearance while lending a convenient time at which to coordinate and install signage.

**Pedestrian Wayfinding**

Most signage on campus is oriented to the pedestrian. This informs the size, design and location of wayfinding signs since they will be viewed from sidewalks and paths by passersby moving at a slower rate than motorists.

Pedestrian kiosks located adjacent to major parking facilities, especially visitor parking areas, provide comprehensive information on campus destinations at an early, convenient point in the arrival sequence. Monument and building signs identify specific buildings or facilities near their main entrances. Buildings that face a campus open space on one side and a street on another may be served by signage on each side, with that signage along the open space designed and located for pedestrians and the signage on the street side designed for motorists and pedestrians.
Implementation

The University will carry out this master plan over many years through construction, adaptive reuse and redevelopment of buildings, creation of new open spaces and enhancement of others, improvements to streets, sidewalks and paths, updating the campus transit system in response to campus growth, and comprehensively organizing and installing a campus wayfinding signage system. To assure that each capital project is consistent with the campus vision and supporting university policy—as described in this plan—the university will utilize a design review process that addresses projects at pivotal points in their planning, design, and construction.

University Initiatives

Full build-out of the development program considered in this planning process will take as much as twenty or possibly more years. The degree to which that growth rate accelerates or slows is dependent on the university's ability to fund growth and improvements and to attract students.

Yet, there are several campus initiatives that can and should take shape relatively soon, each of which is described in this chapter. The following projects represent each of the priority issues around which this plan developed—academic expansion, residential growth, student life, and the campus open space system:

- **Academic Expansion.** Development of the new sciences complex west of Pine Street is the early focus of academic expansion within this plan. Construction of classroom and laboratory buildings in this location will create new circulation and parking needs while updating campus architectural vocabulary and open space design in accordance with the master plan.

- **Residential Growth.** Three primary locations are identified for reinvestment and expansion of on-campus housing. The planning, design and phasing of each varies with its location in relation to the campus and surrounding community.

- **Student Life.** Among other improvements intended to improve and stimulate student life on campus, a new mixed-use building complex containing retail, dining, and other amenities and services in addition to academic space will develop in the center of campus.

- **Open Space System.** A major element in the planned open space system is the creation of a continuous greenway along the natural draw that crosses the campus from east to west. A major part of this effort will be recapturing the drainageway at the western edge of campus along Waterloo Road for recreational use and improved stormwater functions.

One of the fundamental elements of the Campus Master Plan is making the campus an enjoyable and enriching place to study and live. Top among the various strategies described in the plan, a new building is slated for construction in the campus core to house a variety of functions—dining, retail, meeting space, and others—that complement existing services at Guillot University Center. This facility will not only provide a function desired by students, but its location will create a stronger, more convenient and lively campus core.
New Academic Complex

Construction of new university facilities adjacent to Kilby School establishes a full academic presence for the campus on the west side of Pine Street. Tennis courts and the headquarters of Facilities Administration and Planning will relocate to make way for buildings that will house sciences, engineering, and allied health. Introduction of an academic complex in this location and the redesign of Pine Street will together make the street a “seam” that unites the east and west sides of the campus. This also forms a bridge between the campus core and the West Campus residential village.

The buildings will be accessible from Pine Street, Oakview Circle, and the linear park to the north, which includes ADA access from the south and the north. This takes advantage of the change in elevation toward the park. While the buildings will be three stories along Oakview Circle, the slope on the north side provides the opportunity for at-grade entry along an additional lower floor facing the park.

In addition to overlooking the linear park, the building group will also form a common lawn along Oakview Circle. The space is a logical extension of the campus open space system and is of a scale complementary to those at Willingham and Bibb Graves Halls. The arrangement of buildings buffers the space from the more public character of and traffic along Pine Street. Thus, the space more intimately serves the building complex and its users and will be designed to provide opportunities for individual relaxation and study and interaction among students, faculty, and staff.

For those arriving by car, parking will be available in two nearby parking decks—one next to Flowers Hall north of the linear park and the other just east of Pine Street.
Three Residential Villages

As part of the University’s initiative to transform from a commuter campus to a residential campus, three residential villages will emerge on campus, modernizing and expanding residential facilities in existing housing locations. One of the planned villages will develop on the west side of campus around the existing sorority and fraternity housing adjacent to the West Florence neighborhood.

Each of the residential buildings will be arranged on site and scaled to provide a comfortable, physical transition between the campus and community. Street, sidewalk, and intersection improvements will provide a safe, continuous pedestrian and bicycle network interconnecting each of the villages with the academic campus and student life facilities. Each village includes on-site parking and common open spaces. Buildings and open spaces are designed in relation to one another to provide public, semi-public and private spaces and comfortable transitions between each.

North Campus

Reinvestment in the existing housing adjacent to Pine Street and Hawthorne Street will create a pedestrian-oriented student community clustered around residential quadrangles. Taller residential buildings—four to five stories—are oriented toward Pine Street and the campus. Shorter residential buildings—two to three stories—complement the character and size of adjacent single-family residences. Parking is internalized as much as possible to maintain an attractive, green frontage along Pine Street, one of the campus’ image corridors. Residential open spaces are outfitted with desired amenities to encourage continuous residential use and student interaction.

The northernmost block, between Hawthorne and Mattielou Streets, provides additional area for the long-term expansion of this village as the student population continues to grow.

Residential Design

New residential buildings will form semi-public and private spaces through their arrangement in relation to other buildings, open spaces, streets, and paths. These spaces, in combination with the quality design of buildings and interior accommodations, are essential to a pleasant, secure environment for on-campus living.

Contextual elements influence the type and scale of housing. Student housing types, such as in the West Florence neighborhood, will generally be smaller and lower in density to complement and seamlessly integrate into the community. More internalized sites are appropriate for larger, denser housing, especially where they sit next to large university facilities.
**East Campus**

Additional campus housing will be added on Hermitage Drive alongside two existing residential buildings. The new buildings will be comparable in scale with the existing buildings and compatible with the neighboring historic residential districts. The arrangement of the new buildings creates a central quadrangle to serve the overall village. The new open space, which will face Hermitage Drive, will be of a size and design to accommodate a wide range of passive recreational activities and gatherings for residents. Parking is provided on-site and located internal to the block.

**West Campus**

Student apartments will be relocated from Waterloo Road to the realigned segment of Cedar Street north of (the planned extension of) Larimore Street. Immediately south, a more fully realized fraternity and sorority village emerges with the addition of several new residential buildings. Residential buildings will be two and three stories. Porches and other design features provide comfortable, semi-private spaces for residents while complementing the architecture of nearby single-family residences. The extension of Larimore and the construction of the academic complex on Oakview Circle will better connect the village with the center of campus.
Implementing the Plan

Student Life Center

This project focuses on the construction of a new multi-use building complex on the northern edge of the campus core. The buildings, located opposite one another across a new plaza, will house a variety of functions to attract students to the heart of campus on a regular basis. Potential functions include dining, retail and other uses that complement those in Guillot University Center, additional academic and administrative spaces, meeting facilities, and flex space. Such a concentration of diverse functions—or destinations—is an essential component of enhancing the pedestrian-oriented, transit supportive organization of the campus. Locating this mix of uses at the confluence of major circulation routes through the campus encourages visitation and assures activity and interaction.

Sustainable Site Planning and Design

The Campus Master Plan purposefully organizes the campus into spaces, buildings, and connections to produce traditional and environmentally sustainable campus character through:

- Maintaining and enhancing the interconnected series of open spaces in the campus core created by careful placement of new buildings and shifting of parking to perimeter facilities.
- Restoration, enhancement, and celebration of drainageways, creeks, and wetlands to allow them to better serve as campus amenities.
- Re-landscaping with indigenous plant materials to help minimize water use.
- Decoupling impervious surfaces and replacing or installing drainage swales (rather than storm sewers) to remove and percolate runoff as necessary.
- Reduction of heat island effects through tree planting and building orientation to provide shade.
- Interconnection of key areas via an integrated pedestrian/bike/open space system.
- Buildings sited so outdoor spaces may be shaded in summer, accept south sunlight in winter, and encourage inside/outside use in moderate and fair weather.

The disposition of the eastern building further defines the northern edge of the linear open space that flows through the campus core. The two buildings together create a plaza that is enlivened by the arrangement of uses around it. The most public functions of the buildings are located at ground level looking out onto the plaza. This maximizes the visibility of the uses, provides convenient access and increases opportunities for interaction, both visual—which is an important environmental design strategy—and social.
Natural Open Space

This open space project, located between the Pine Street bridge and the realigned frontages of Circular Road and Cedar Street, reclaims a large swath of the campus previously developed for student apartments (which will move to Circular Road as part of the West Campus Residential Village). The site will be restored to a near natural state and will serve as a linear park continuing the greenway emanating from the center of campus.

Restoration of the stream corridor will also improve the stormwater drainage function it has historically served. Low weirs form small pools, and bioremediation techniques, including the use of plant material to filter stormwater and to reduce streambank erosion, will capture sediment and reduce pollutants in runoff before reaching Cypress Creek.
Implementing the Plan

Implementation Sequence

The rate at which the University will grow in the coming years cannot be accurately forecast. It is dependent on many variables. Consequently, the stages of campus development represented in the following diagrams do not represent specific time frames. Instead, they illustrate a sequence of capital investments that will lead to the realization of the vision described in this plan.

Sequencing takes into account an array of logistical issues so that the University may approach development of new buildings—and demolition of existing ones where necessary—with as few complications as possible, such as where to house students, cars and classes as old buildings come down and new ones are built.

This sequencing strategy emphasizes the strengthening of the academic campus, development of residential villages, maintaining a pedestrian-scaled campus, and the enhancement and creation of open spaces through the construction of buildings in appropriate locations.

Priorities include the East Campus Residential Village, the academic expansion west of Pine Street, and enhancement of buildings and services to support student life in the campus core. Continuing investment and construction in later stages of plan implementation will result in the completion of the North and West Campus Residential Villages, additional parking and athletic facilities, and improvement of academic and administrative facilities in the center of campus.
Introduction

To accomplish the overall vision captured in this plan, the design of an individual project—building, open space, street, or path, etc.—must satisfy more than the requirements of its own program or project description. No campus project exists in a vacuum. The design solution for a capital project must contribute appropriately to its immediate surroundings and the campus as a whole. In this way, each physical change brings the campus closer to its desired future condition.

Implementation of the Master Plan’s design policies is achieved largely through the following Design Guide. The guidelines serve as measurable standards for the continued physical development and enhancement of the campus, against which project designs may be evaluated with respect to their consistency with the Master Plan in terms, simultaneously, of the big picture and the small detail.

This chapter includes general, contextual design guidelines for the campus as a whole and guidance for projects situated along the community edge. The guidelines also address architectural design, site and landscape design, and sustainable design.

Consultant selection and thorough evaluation of the scope, feasibility and impact of proposed projects are also critical to accomplishing plan goals through each project. Major projects, such as those that will have a significant impact on the campus, may require that project-specific guidelines be prepared at the outset to assure that campus planning and design policies and the global implications of the project on the campus are fully understood and will be properly addressed by the project team.

Community Design

Through purposeful use of traditional principles of campus planning, design, and building strategies, the University will:

- Minimize the use of resources, restore and enhance neglected natural systems, and maximize the social, health, and energy benefits inherent in compact development.
- Facilitate development of a physical environment that will conserve resources by design in a manner that will remain adaptable to advances in alternative energy technologies as they become available and affordable.
- Demonstrate ways in which sustainability may be achieved by common sense, low-, and no-cost design decisions that also produce a more livable and enjoyable environment.
Application

These guidelines apply to all capital projects. They are intended as recommended design practices rather than specific dictates. As later described, projects will be reviewed against applicable guidelines at varying points in their planning and design.

Use of the word ‘shall’ is not meant to prohibit alternative design solutions. The best solution for a site should not be rejected because it was not conceived of within the Campus Design Guide. When project designers prepare a design solution that departs from these guidelines, they must also be prepared to formulate and compare a design solution that conforms to them. As a rule, the University will not approve projects in conflict with these guidelines unless the design is of truly exceptional quality, conforms with Master Plan policies and principles, and is otherwise in keeping with the spirit of the guidelines.

Whenever a project design appears in conflict with a policy or principle of the Campus Master Plan, justification must be made for such decision. Justification must show that the conflict is unavoidable or isolated and that all other policies and standards are being followed. In some cases, justification may show that the decision is an improvement or advancement upon the plan but, again, is otherwise consistent with the intent of the Master Plan and the Design Guidelines.

Design Review Process

The design review process is administered by Facilities Administration and Planning and incorporates reviews by the University Board of Trustees, whose concern is the promotion, development, and maintenance of the campus image, physical quality, and safety.

To assure an effective design review process, the project sponsor, design consultant, and Facilities Administration and Planning department must work together from project initiation onward. It is the responsibility of the Facilities Administration and Planning to engage consultants in the early stages of the project. This will assist designers in understanding and responding to aspects of the Campus Master Plan that may apply, the Design Guide, and any other University expectations particular to the project.

There are six major phases of project development, design and review at UNA:

- Concept Review and Feasibility Analysis
- Program Development
- Conceptual Design
- Schematic Design
- Design Development
- Construction Documentation
**Conceptual Design.** This review addresses fundamental planning and design decision-making regarding a project’s consistency with the Master Plan and its campus context. This review also takes into account preliminary architectural and sustainable design concepts.

**Schematic Design.** This review evaluates project designs in more detail and involves all applicable sections of the Design Guide. Schematic Design review confirms the contextual design, where revisions have occurred since Conceptual Design, e.g., architectural style and materials, programming of spaces, landscape design, and building systems design.

**Design Development.** This review confirms the remaining elements of the architectural, landscape, and systems design and is the final review by the Board of Trustees/Design Review Committee. Upon Design Development approval, the project team is released to finalize construction documents and any sustainable design components that take effect during construction. During this phase, project submittals are reviewed and approved by Facilities Administration and Planning.

**Construction Documentation.** This final project review is handled primarily by Facilities Administration and Planning to assure that construction documents accurately reflect the approved project design, including any sustainable construction practices.

**Campus Design Guide**

Where the Campus Master Plan provides direction to the University regarding overall campus growth and enhancement, the Campus Design Guide provide more detailed expectations for individual projects to ensure each positively contributes to the development of the campus in accord with the Master Plan. The Guidelines are organized into the following sections:

**Contextual Design.** The purpose of these design guidelines is to ensure that new development and redevelopment:

- is properly integrated into the existing and planned campus;
- provides comfortable, attractive relationships between buildings, open spaces, and streets and paths
- maintains an appropriate physical relationship between the campus and the surrounding community
- supports pedestrian, bicycle, and transit access
- contributes to campus safety

**Architectural Design.** The essential purpose of architectural guidelines is to ensure that new buildings are in harmony with the overall campus, the intended character of the design precinct, and the buildings and open spaces immediately surrounding the building site. It is not intended that the guidelines dictate choices about architectural style, except to the extent that such decisions are influenced by prevailing characteristics of the precinct. Architectural design decisions, e.g., the placement of entrances or the character of a building at grade, also affect how well the building design accomplishes the larger design goals for the campus.
The University of North Alabama

4.4

Campus Master Plan

Site and Landscape Design. While the Contextual Design guidelines address the planning and design of open spaces at a conceptual level, the Site and Landscape Design guidelines provide more specific standards for open space design, e.g., lighting, plant and paving materials, parking lot landscaping, fences and walls, screening, and site furnishings. The intent of these guidelines is to ensure high-quality, permanence, and consistency throughout campus while also affording designers flexibility to respond to contextual issues, such as consideration of natural, environmental features or the function and character of adjacent buildings and open spaces.

Sustainability. These guidelines provide goals for campus development to optimize energy efficiency and environmental quality while mitigating impacts on the natural environment. Through sustainable design, the University may also achieve long term savings from lower operational and maintenance costs. Projects are not expected to achieve a specific level of sustainability such as through the Leadership in Energy and Environmental Design (LEED) or similar rating system. Rather, these guidelines are aspirational and should be considered a challenge to designers to incorporate sustainable design practices into projects within budget.

Campus Design Principles

The following Campus Master Plan design principles should be taken into account early in the planning and design of capital projects to assure that they conform fundamentally with the Campus Master Plan:

- The primary purpose of the campus is to provide an appropriate setting for teaching, research and creative activity, and service.
- The core of campus is for learning and creative activity, and for selected, essential supporting functions and services.
- The surroundings of the core are for student residences and student life – an environment supportive of learning.
- Other supportive functions, including access to the core and its immediate surroundings, are directed primarily to the campus perimeter.
- Historic resources, including relationships to adjacent historic districts, are respected and supported.
- A usable open space system defines and weaves together the overall campus.
- Campus buildings are placed to help create and form usable, legible open space that will support student life.
- Pedestrians take precedence over bicycles and automobiles throughout the campus.
- A primary pedestrian circulation system interconnects campus housing and nearby residential areas with the academic core.
- All access and parking systems are planned and designed to organize and direct a significant percentage of longer internal trips toward the use of bicycles and the campus transit system.
Contextual Design

Campus Geometry

Respect prevailing geometric relationships.
The geometry of each project should reflect the prevailing geometry in the area—whether buildings or open spaces are of a picturesque or formal arrangement—while also respecting the geometry of the campus as a whole and those elements which cross or tie together the various parts of the campus. This may be achieved by orienting buildings and spaces with respect to existing or extended axes and by protecting important vistas or viewsheds created by the arrangements of adjacent portions of the campus.

Open Space

The following guidelines are intended to properly shape the creation of open spaces and improvement of existing spaces within the campus and to guide the treatment of natural areas within and at the edges of the campus.

Ensure open spaces are of a size and design to serve an intended purpose.

• Open spaces are not solely the absence of buildings but are created by the careful location, orientation, and shape of buildings alongside them. Open spaces should be considered as outdoor rooms with buildings or other vertical elements serving as the walls of the room.

• Open spaces are primarily intended for congregation, passive or active recreation, passage, or a combination of these purposes.

• Campus open spaces should be either “formal”—having strong edges, regular geometries, and axes—or “picturesque”—having loose edges, organic shapes, and meandering paths.

• A picturesque open space design should be used in those locations where steep slopes, woodlands, and natural water features are present to minimize their disruption. These tend to be at the edges of the campus and may accommodate passive recreational use.

• Open spaces in the historic center of the campus should be of a picturesque design complementing the spaces created by the Olmsted Plan.

Campus Open Space Types

Plazas and courtyards should include plantings to soften the space and provide scale and shade.

Lawns vary in size depending on location and should be of a relatively continuous depth along a block. Additional lawn depth may be required where a vista is to be provided.

Quadrangles should be lined with background buildings. Foreground buildings may be used along quadrangles to create a visual anchor to the open space.

Streetscapes and paths should be landscaped to provide shade and comfort and properly lighted for safety. Streetscapes should incorporate pedestrian paths, and where identified in the Campus Master Plan, bicycle lanes.

• A formal open space design should be used for residential quadrangles.

Avoid remnant open spaces.

• The design of new buildings should reinforce existing open spaces or be coordinated with adjacent buildings, whether existing or proposed, to properly define new open spaces identified in the Campus Master Plan.

• All open spaces should support campus safety by enhancing natural surveillance, access control, and territorial reinforcement.
Open spaces should be of a “regular” shape unless a compelling reason is proposed that adds value to the space and is otherwise compatible with these guidelines. In such cases, opportunities for natural surveillance should not be compromised.

Vistas and Viewsheds

Protect or improve existing views.

- Existing vistas and viewsheds shall be protected and no new structures or facilities shall be constructed that will interfere with sight lines or detract from the view. The vista from Court Street is essential to the image of the campus and should be protected from inappropriate encroachments.
- Existing views that are obscured should be improved by the modification or relocation of existing structures over time.

Create new views.

- New vistas should be created through the placement of buildings in prominent locations such as the terminus of a viewshed, street, or open space axis.

Natural Preservation

Preserve natural areas or improve them for passive recreational use.

- Open spaces not dedicated for active recreational use or for gathering or passage should be maintained in a natural or near natural condition. In some cases, minor improvements to accommodate passive recreational use are appropriate.

Building Form

Respect the scale of adjacent buildings and open spaces.

- The scale of new buildings should be compatible with the scale of those nearby, including those at the community edge.

Design the massing of buildings according to their spatial purpose.

- Buildings either define edges to open spaces (background buildings) or act as focal points to spaces (foreground buildings).
- Background buildings should have relatively simple shapes and massing while foreground buildings may have more complex shapes and massing.

Environmental Quality and Comfort

The university campus will develop new outdoor environments reflecting the quality of those in the historic campus core:

- A densely developed set of usable open spaces interconnected by pedestrian paths, bikeways, and transit.
- An open space framework embraced by campus buildings located, planned, and designed to define and contain usable exterior spaces.
- Pleasant outdoor environments made inviting for year-round use through shading in summer, exposure to winter sunlight, and careful selection and placement of trees to moderate climatic extremes inside and out.
Design buildings with unique functions and prominent locations as “foreground” buildings.

- Foreground buildings are hierarchically important within the campus and, as such, reflect that significance through their distinctive architecture. Foreground buildings are intended to be exceptional and therefore should be sparingly used to maintain a sense of architectural cohesiveness throughout the campus.

- Foreground buildings generally serve a unique campus function, such as Bibb Graves Hall or Norton Auditorium, and should be carefully positioned to reinforce their importance. For example, foreground buildings should be located at the terminus of a street or the axis of an open space.

- Foreground buildings should be spaced apart so that they do not compete with one another, i.e., only one building in a building group clustered around an open space should be the foreground building in that location. If all buildings are designed as foreground buildings, then no building is visually important.

- Special features of a foreground building should be oriented toward its primary view(s).

- While all buildings on campus should be of quality design, the majority of buildings on campus should be “background” buildings, which must meet four design criteria: (1) they adequately serve the building program, (2) they define edges of open spaces, (3) they maintain cohesiveness among a building group, and (4) they do not visually compete with adjacent foreground buildings.

- Background buildings should continue the shape, massing, rhythm, and placement of adjacent buildings (other than a nearby foreground building).

- In some cases, a building may act as a foreground building from one view and serve as a background building from another view.

Building Orientation and Disposition

Locate buildings with respect to paths and streets to provide transition zones.

- The location and frontage characteristics of a building should create appropriate transitions between public, semi-public, and private zones.

Orient buildings to reduce energy consumption.

- Wherever practicable, the long axis of a building should be oriented east-to-west to maximize opportunities for passive solar heating.

Place buildings at the edges of open spaces rather than within them.

- While the Campus Master Plan identifies locations where it is appropriate for certain buildings to sit within space, most buildings should be located to enclose, rather than encroach into, open spaces.

- Minor structures that are necessary and desirable to support the function of an open space, such as pavilions or gazebos, should be mostly transparent and should have a clear axial relationship to a formal open space.
Adhere to Build-to Lines.

- Build-to lines identified in the following map occur along streetscapes and open space edges to which buildings must extend to properly frame the streetscape or open space.

- The façade of foreground buildings may vary up to 50% of the façade span from the build-to line to allow for creativity in massing and façade articulation.

- The façade of background buildings may vary up to 35% of the façade span from the build-to line.

- Encroachments beyond a build-to line should only be proposed when supported by the Campus Master Plan.

Multi-modal Environment

Enhance pedestrian infrastructure.

- All streets through campus should be designed as “complete streets” providing adequately sized travel ways, sidewalks, landscaping, lighting, and, where applicable, bicycle lanes and on-street parking.

- Pedestrian paths shall be directly connected to building entrances by the extension of the path or by a plaza or similar hardscaped entrance area extending to the path.

- Crosswalk improvements shall be provided wherever pedestrian paths cross vehicular ways.

- Surface parking lots should be designed to concentrate pedestrian passage into a limited number of continuous, protected paths which utilize pedestrian tables at crossings with vehicular ways.
Enhance bicycle infrastructure.

- For those streets designated for bicycle lanes, adequate width, signage, and pavement marking shall be provided. Each designated street shall have a one-way bicycle lane along each side.

- Multi-use paths shall have adequate width, signage, and surface marking designating that portion of the path intended for bicycle use separate from the area intended for pedestrian use.

- Bicycle racks should be provided in accessible, visible locations and mounted on concrete pads. To avoid visual obtrusiveness, bicycle racks may be at side entrances or partly screened with low hedges.

Plan and manage vehicular access.

- Vehicular access to buildings and parking areas should be limited in size and should require adequate spacing from intersections and adjacent driveways to reduce traffic conflicts and improve safety and traffic flow. Driveways shall be at least 100 feet from existing or planned intersections.

- Wherever possible, access to new buildings and parking areas shall be through shared driveways. Relocation of existing driveways to create new, shared entrances is encouraged.

- For buildings fronting on Pine Street, driveway access should be from an adjacent campus street wherever possible.

- Curb radii at intersections and driveways shall be as small as practical, given the types of vehicles needing access and desired speed of the concerned streets.

- For streets with on-street parking or an on-street bike path, an “effective” curb radius may be used rather than a wider actual radius that can encourage higher speed turns.

Site parking facilities in locations to support a pedestrian environment and to minimize their visual impact.

- Parking facilities should generally be located toward the edges of the campus so that the storage of cars requires the minimum separation of campus functions.

- Within the interior of campus, only small parking lots should be created and should be screened from open spaces and streets by buildings.

- At the edges of campus, parking lots should be landscaped internally and at their edges. Perimeter landscaping limits headlight glare and reinforces intended circulation patterns (access control). Such landscaping may include low walls, fences, shrubs, trees, or a combination of these.
Design to accommodate future transit facilities.

- For projects located in areas where future transit stops may be designated, adequate space should be reserved for their installation.
- Buildings adjacent to transit facilities should be designed so that their main entrances are legible from and directly connected to the transit facility.
- Transit stops and related facilities shall be designed to provide safe, convenient access to sidewalks and buildings and shall include adequately sized signage to identify the facility to pedestrians.

Design for accessibility of all users.

- Sidewalks, multi-use paths, parking areas, recreational facilities, and building entrances shall be designed to assure accessibility for students, faculty, employees and visitors with disabilities in accordance with the Americans with Disabilities Act (ADA).
  - Sidewalks and paths intended for access by the handicapped shall have properly designed ramps wherever the path crosses a vehicular way.
  - At street intersections, ramps should be aligned in the direction of the sidewalk/crosswalk, not toward the center of the intersection.
  - Ramps at building entrances should be designed as integral components of the building design, not as afterthoughts.

Environmental Safety

The following guidelines are intended to maximize safety and comfort throughout campus by incorporation of Crime Prevention through Environmental Design (CPTED) strategies.

Maximize opportunities for “natural surveillance”.

- Buildings should include windows that overlook sidewalks and parking lots.
- Site and landscape designs should facilitate surveillance, especially around designated and opportunistic points of entry.
  - Visual barriers, such as opaque fences, walls, or hedges should not exceed four feet in height especially near points of pedestrian or bicycle entry.
  - The design of lighting systems should not create blind spots or miss areas that are critical for observation and safety.
  - Potential problem areas should be well-lit: paths, stairs, entrances/exits, parking areas, ATMs, phone kiosks, mailboxes, transit stops, recreation areas, laundry rooms, storage areas, dumpster and recycling areas, etc.
- Design and install security lighting to avoid blinding glare and/or deep shadows.
  - Eyes adapt to night lighting but have trouble adjusting to severe lighting disparities. Using lower intensity lights may require more fixtures.
  - Lighting should be placed along pathways and other pedestrian-use areas at proper heights to light the faces of the people in the space.
- Natural surveillance techniques should be complemented with mechanical and organizational measures, such as cameras, in areas that are seldom accessed and/or where window surveillance is unavailable.
Provide "access control".

- Entrances and exits, fencing, lighting, and landscaping should be located and designed to limit access or control flow.
- Points of entry should be carefully managed.
  » Legitimate points of entry for the public should be clearly designated.

» The design of buildings and structures should limit access to roofs or upper levels.
» Low, thorny bushes may be used beneath ground level windows to deter such access.
- Fencing should be properly designed to control access without impacting surveillance.
» Between public and semi-public spaces (such as front lawns), waist-level fencing should be considered to control access while allowing natural surveillance.
» Taller, opaque fencing or walls (for example, masonry) may be used in areas with little or no public access, such as loading and service areas.

Design and maintain distinct public, semi-public, and private spaces to support "territorial reinforcement".

- Private activities should be limited to defined private areas.
- Activities in common areas should be scheduled to attract more people and increase the perception that areas are controlled.
- Buildings, fences, pavement, signs, lighting, landscaping, and other environmental cues should be used to define territory as public, semi-public, or private.
  » Continuous maintenance of a premises and landscaping communicates an alert, active presence occupying the space.
  » Outdoor spaces with more trees are seen as safer and more likely to be used.
  » Security system signage should be displayed at access points.
  » Seating, refreshments, and other amenities should be located in common areas to attract larger numbers of desired users.
  » Avoid cyclone fencing and razor-wire used atop fencing and walls. These give the impression that a location is not frequently occupied or surveilled.

Transition Zones

Fences or walls may be used to distinguish between public, semi-public, and private spaces.

Limited height ornamental fences or walls, including retaining walls, may be used to define the transition between a public space, such as a streetscape or path, and a semi-public space, such as a lawn or gathering space.

Generally, fences/walls located between a building front and the public space should not be taller than four feet. Fences/walls taller than four feet should be located away from public views.
Community Edge

The UNA campus has frontages on several public streets and, in some areas, directly abuts privately-owned property. Special consideration must be given to those areas where the campus touches or faces the community. In particular, several historic, single-family neighborhoods lie next to the campus. To assure a positive physical relationship between the University and its neighbors, building scale, lighting, noise, traffic, and similar impacts must be carefully addressed in the design of new buildings and open spaces.

Design buildings to suit the scale of neighboring structures.

- Buildings adjacent to neighboring homes should be of comparable scale or they should be set back away from the adjoining neighborhood. Building massing may also be designed so that the taller portions of a building are located furthest from adjacent homes.

Avoid light pollution and glare.

- As much as possible, locate outdoor lighting, such as for athletic facilities and parking lots, away from neighboring residences. Direct and shield lighting to prevent glare and spillover. For parking lots, use lower height, less intense lights next to homes.

- Densely spaced evergreen trees can be used as part of buffers to reduce lighting spillover. Solid hedges and/or low walls may be used to prevent headlight glare on neighboring property.

- Buildings may also be used to prevent light spillover from outdoor areas provided they are of comparable scale to adjacent homes and do not, themselves, create lighting problems.

- Interior building lighting should be turned off at night, if not in use; otherwise, interior lighting and fenestration on the eastern side of campus buildings should be designed to prevent light spillover and glare on adjacent residences.

Limit the community’s exposure to noise.

- Outdoor athletic and recreation facilities and loading and unloading areas should be separated from the adjoining neighborhood by a generous setback and a buffer made up of a solid wall, densely spaced trees and shrubs or a combination of these.

- Buildings may also be used as a noise break provided they are of comparable scale and noise-generating building equipment is located away from neighboring homes.
Building Form

Design buildings to allow for adaptive reuse in the future.

- Buildings with wide footprints generally limit adaptive reuse and should only be used when necessary to fulfill the intended building program.
- Buildings with central, double-loaded corridors are adaptable to a wide variety of uses and allow for the optimization of natural daylighting and indoor air quality.
- For structured parking, parking decks, rather than ramps, should be used to maximize their adaptability for re-use, if the need arises.

Avoid blank walls and undifferentiated masses.

- Facade articulation, including windows and entryways, material changes, projections, recesses, and other detailing, should be used to make any building elevation facing a street or pedestrian way visually interesting.
- Large buildings should be designed so that they appear as multiple volumes rather than large, undifferentiated masses. This creates human scale and assures more interesting visual character.

Design buildings with a Base, Middle and Cap.

- Regardless of architectural style, a building’s facade, composition, and materials should be viewed as having a base, middle, and cap. This is achieved through the use of multiple materials, horizontal bands, projections and recesses, and other forms of architectural articulation. This approach visually breaks down buildings into divisions that reflect human scale.

- The “base” should reflect sturdiness, visually supporting the upper portions of the building. For one and two-story buildings, the base should extend at least to first floor windows. On taller buildings, the base may extend to the top of the first floor.
- The “middle” is often the largest area of the building facade and establishes the essential visual character of the building.
- The “cap” of one- and two-story buildings should include: 1) for flat roofs, an attractive cornice element or 2) for pitched roofs, an articulated and well-proportioned roof line. For four-story or taller buildings, the top floor may form part of the cap.

Emphasize verticality.

- Lower height buildings should have varying roof and facade elements that lend a sense of verticality.
- Entry and end bays may be designed as vertical or tower elements projecting outward from the main body of the facade.
- Recessed and projecting bays de-emphasize horizontality, give buildings a sense of depth, and may be used to create forecourts and similar semi-public transitions from adjoining open spaces and paths.
- Tower elements may break from the three-part division of the base, middle, and cap but should incorporate major horizontal lines that express the base, middle, and cap of the main body of the facade.
Campus Geometry

Respond to and reinforce contextual geometries.

- Buildings placed on visual axes should have their most prominent architectural elements aligned on the axis.
- The design of a new building should respond to symmetry in an existing building facing it across a formal open space.
  » This may be satisfied through symmetry in the portion of the facade containing the entrance and does not require the entire building or facade to be symmetrical.
  » Foreground buildings may be excepted from this.

Materials and Colors

Use brick as the primary material for most building facades.

- An approved blend of brick that complements exterior colors of adjacent buildings should be used as the dominant material in the facades of background buildings.
- Running bond is preferred. Alternative bonds may be used as accents.
- Brick facades should be articulated with contrasting masonry materials, including window and door surrounds, belt courses, pilasters, quoins, and similar details.

Materials

Use of local, recyclable and resource-efficient materials will serve as a model for development in the surrounding community through:

- Replacement of water intensive landscaping materials with xeriscaping.
- Combining service/emergency drives and pedestrian walkways that emphasize pedestrian dominance to reduce paved area and increase pedestrian safety.
- Use of durable materials and systems for building exteriors, windows, doors, and roof systems consistent with regional character.
- Installation of "green roofs" where feasible to extend roofing membrane and insulation life, manage runoff, and reduce heating/cooling loads.
- Selection and design of interior structure, materials, and partitions to enhance flexibility and future convertibility, as well as mixed use potential.
- Programming and design of planned buildings for long-term flexibility of use and ease of convertibility as needs evolve.
- Use of recyclable/renewable/reusable materials and systems for interior construction, in anticipation of continuing change.

Stucco bases should include concrete or another masonry material so that the stucco does not extend to the ground.

Create consistency in building groups.

- Similarity of materials lends cohesiveness among multiple buildings fronting on a common open space.

Distinguish foreground buildings.

- The design of foreground buildings may incorporate materials not normally recommended for background buildings.
- A variety of materials should be used to articulate and detail prominent buildings.
Entrances

Place building entrances in response to prevailing geometries and to reinforce pedestrian circulation patterns.

- Entrances should be prominent and located on the major open space along which the building fronts.
- Building entrances should be located either along an open space with high pedestrian activity or along a street front.
- Placement of primary building entrances should acknowledge and reinforce geometric relationships established by existing buildings and open spaces and as informed by the Campus Master Plan.
- For buildings that face both a street and an internal open space, two entrances may be necessary. In such cases, the primary entrance should be chosen based on how and from where building users tend to arrive.

Accentuate building entrances.

- Building entrances should be emphasized through the use of varying materials, massing, vertical elements, and landscaping.
- Attractive stoops emphasize entrances of buildings with first floors raised above ground level.
- Colonnades, porticoes, and similar architectural elements dramatize entranceways while also providing shelter from inclement weather.
- Service entrances should be unobtrusive.

Avoid primary or bright colors.

- Careful color selection should lend elegance and timelessness to campus buildings.
- Natural, earth tones and subdued colors should be used on most buildings.
- Primary and bright colors, when over- or mis-used, tend to date buildings, are difficult to blend with other materials and colors, and can cheapen the appearance of a building.

Careful color selection should lend elegance and timelessness to campus buildings. Natural, earth tones and subdued colors should be used on most buildings. Primary and bright colors, when over- or mis-used, tend to date buildings, are difficult to blend with other materials and colors, and can cheapen the appearance of a building.

Avoid primary or bright colors.

- Careful color selection should lend elegance and timelessness to campus buildings.
- Natural, earth tones and subdued colors should be used on most buildings.
- Primary and bright colors, when over- or mis-used, tend to date buildings, are difficult to blend with other materials and colors, and can cheapen the appearance of a building.

Careful color selection should lend elegance and timelessness to campus buildings. Natural, earth tones and subdued colors should be used on most buildings. Primary and bright colors, when over- or mis-used, tend to date buildings, are difficult to blend with other materials and colors, and can cheapen the appearance of a building.

Avoid primary or bright colors.

- Careful color selection should lend elegance and timelessness to campus buildings.
- Natural, earth tones and subdued colors should be used on most buildings.
- Primary and bright colors, when over- or mis-used, tend to date buildings, are difficult to blend with other materials and colors, and can cheapen the appearance of a building.

Careful color selection should lend elegance and timelessness to campus buildings. Natural, earth tones and subdued colors should be used on most buildings. Primary and bright colors, when over- or mis-used, tend to date buildings, are difficult to blend with other materials and colors, and can cheapen the appearance of a building.
**Windows**

*Provide adequate fenestration along open spaces, paths and streets.*

- Building elevations facing open spaces, paths, and streets should include 20-50% total window area.
- Greater window area should be provided along major open spaces, streets, and paths.

**Emphasize verticality.**

- Typical windows should be vertical in proportion. Horizontal window openings may be acceptable when balanced with details that provide a sense of verticality.

Windows should include details, such as mullions, that give a sense of verticality, human scale, and texture (left). Horizontally-proportioned windows (right) without such details should be avoided.

- Glazed areas shall be subdivided by true mullions. Large areas of glazing should include a mullion pattern that creates larger and smaller window subdivisions.

**Recess windows within the thickness of the wall.**

- Recessed windows give the facade a greater sense of depth and solidity while also reducing solar gain. Windows should not be flush with the exterior wall.

Use clear glass.

- Reflective glass is prohibited.
- Glass may not be noticeably tinted except where necessary to accommodate certain building uses.

**Roofs**

**Avoid monolithic roof forms.**

- Pitch roofs covering large spans should be broken down into smaller roof elements.
- The parapet of flat roof buildings should include an appropriate level of articulation. Long spans of parapet walls should be broken up with projections and other details.

**Choose roof materials to support energy efficiency.**

- Roofing should have a high solar reflectivity and emissivity to lower solar heat gain. Lighter colored roofs tend to have greater reflectivity.

**Appurtenances**

*Design and locate utilitarian structures to support the quality of the building group, open space and public views.*

- Where possible, parking structures should be lined with other functions where easily visible from public view. Otherwise, the facade should be compatible with that of adjacent buildings, i.e., through materials and the size and rhythm of openings.
- Small utilitarian structures should be placed away from open spaces, streets, and other public views. Otherwise, they should be screened or designed to continue the appearance of adjacent buildings.
Site and Landscape Design

The following site and landscape design guidelines support the enhancement of the campus open space system as described in the Campus Master Plan.

The landscape designer for projects creating new or altering existing campus open spaces shall be a Landscape Architect registered in the State of Alabama.

General Guidelines

Create diverse and engaging spaces and views.
- Site development should create diverse open space types and experiences for campus users.
- New landscape designs should open views to architecturally significant existing buildings.

Support safety.
- Site amenities and plantings should enhance campus security through careful attention to circulation routes, lighting, and maintaining visibility.

Respect the site.
- The site plan must demonstrate consideration for unique site features including topography, hydrology, and existing vegetation and propose acceptable methods to preserve site elements deemed desirable by the University.
- Mass clear-cutting or grading of a site to the extent that all native vegetation or natural site features are lost is prohibited.

Hardscape Design

Use durable hardscape designs as needed to support intended activities.
- Hardscape is to be used to provide a durable, all-weather surface to accommodate pedestrian activity and outdoor gatherings and activities.
- Hardscape is intended generally for sidewalks and paths, plazas/building entrances, transit stops, and in gathering places adjacent to buildings or building groups.
- Materials should be chosen based on the activities intended for the location, including such considerations as the use of a combination of materials for prominent locations and compatibility with the materials and styles of adjacent buildings.
- Wherever possible, hardscape materials shall be chosen to maximize pervious surface area.

Design sidewalks and paths to accent the open space and adjoining buildings.
- Most sidewalks and paths require only scored concrete while more prominent pedestrian areas, including multi-use paths, may require additional accent surfaces to visually reflect their importance.
- To the extent possible, sidewalks and paths should be used as the edge of planting beds to reduce the need for edge materials between the beds and grassed areas.
Design sidewalks and paths to support their intended function.

- Sidewalks shall be a minimum of eight feet wide.
- Multi-use paths shall include a bicycle and pedestrian path of at least 15 feet in width. Grass pavers should be used at the edges to widen the path to 20-22 feet, where needed to accommodate emergency vehicle access.

Use special hardscape features to accentuate plazas, building entrances and gathering places.

- A combination of a limited palette of hardscape materials shall be used to distinguish building entrances, public spaces, and gathering places.
- Plazas and gathering spaces should include special paving patterns and accent banding.
- All walkways for building entrances, plazas, and feature areas shall consist of compacted dense grade base, concrete subslab, mortar bed, and brick pavers or concrete topping slab.

Incorporate suitable facilities for transit stops where applicable.

- A suitably sized, all-weather surface shall be provided along with other furnishings for transit stops.
- Major transit stops should include a standard shelter from inclement weather or have cover provided by canopies or similar features associated with adjoining buildings, open spaces, or paths.

Parking

Minimize and/or enhance the appearance of surface parking through location and landscaping.

- Surface parking areas shall be minimized from public views, to the degree practicable, by location and/or through landscape screens.
- Surface parking areas should be located away from open spaces and streets.
  - Parking lots may be located internally to a building group. In this manner, access to and use of the lot may be shared.
- Landscaping shall be provided along the perimeter and within the interior of surface parking lots.
- Landscaping shall be provided along the perimeter of any parking areas not bounded by a building.
  - Limit pedestrian access to/from parking lots to desired entry points by edging the parking area with landscaping consisting of all or a combination of hedges, trees, and walls/fences.
  - Hedges and walls/fences shall be between three to four feet in height to block vehicle headlights from off-premise views. Such screens shall not be of a height to compromise natural surveillance.
Landscape islands and circulation should be arranged to break down the overall scale of a large surface parking area so that it appears as a group of small parking areas.

» Landscaping islands shall be sized to provide sufficient root growth for canopy and/or understory trees.

» Internal landscape islands shall be a minimum of 160 square feet (9 feet x 18 feet, typical).

» Include a landscape island for each contiguous 15 spaces.

Landscape areas should be protected from vehicle encroachment by wheel stops located no less than two feet from the curb or landscape edge. Similar barriers may also be acceptable.

Minimize pedestrian–vehicle conflicts.

» Convenient pedestrian paths should be designed into the arrangement of large parking lots to direct pedestrians to designated crossings and pedestrian linkages.

Screen views of parking structures.

» Portions of parking structures visible from streets, paths, and open spaces should be screened with evergreen landscaping. This does not apply to parking structures with liner buildings or liner facades.

Lighting

Provide lighting for safety and design consistency throughout the campus. Refer also to the Illumination Standards and the Environmental Safety strategies applicable to lighting.

Provide lighting in the following locations:

• Along streets, sidewalks, and other paths
• Within open spaces and parking lots
• At building entrances
• In locations appropriate for accenting of buildings, signage, gateway, and landscape elements

Minimize light trespass, glare and light pollution.

• Where taller fixtures are needed, heights above 16 feet are discouraged. In no case, shall fixtures taller than 20 feet be permitted. This shall not apply to lighting for sports and recreational fields.

• Overly bright lights and frontal floodlighting are discouraged. Lower-wattage light sources should be used as much as possible.

• Fixtures should be designed to direct light only where it is intended and appropriate shielding should be used.

  » Exterior fixtures with output greater than 3500 lumens shall be full cutoff.

  » Exterior fixtures less than 3500 lumens shall be cutoff or full cutoff.

• For parking areas, direct and indirect lighting shall be contained to minimize stray light. Idle modes should be used during off-peak hours to reduce light pollution and energy consumption.
• Lighting of landscape elements from a distance can interfere with nighttime vision and is discouraged.

• Up-lighting should only be used where it will not interfere with the vision of passersby.

• Ground-based building lighting should be designed and/or positioned to avoid interfering with the vision of passersby.

Choose appropriate light sources.

• Consideration should be given to the intensity and color of the light to ensure it complements the elements to be illuminated. High-pressure sodium lighting is prohibited.

Design and locate fixtures for service accessibility and safety.

• Fixtures should be of a type that is easy and safe for changing of lamps. Accessible locations encourage more regular maintenance.

• Tamper-resistant hardware should be used wherever a fixture is accessible to the public.

• Place “hot” fixtures so that physical contact with a hot lamp or fixture is normally avoidable.

Connect lighting to a control system.

• Lighting should be connected to a photocell to turn fixtures on and a time clock to turn them off.

Highlight a building’s most prominent features.

• When the exterior of a building is to be illuminated, those features which are unique or significant about the building should be highlighted.

Illumination Standards

Provide lighting of a height, spacing and intensity so as to create comfortable, safe, and consistent illumination. In determining illumination levels, adjacent, existing lighting shall be considered. Where approved by the University Architect, existing lighting not consistent with these guidelines may be modified as needed to create the illumination pattern and level desired for the project and surrounding area.

Community edges. Lighting shall be shielded to prevent glare and designed so that illumination does not exceed 0.2 footcandles on abutting community residential edges or 0.5 footcandles on abutting community nonresidential edges.

Streets. Illumination at pavement level shall be maintained between 0.5 and 1.0 footcandles. The ratio of average to minimum illumination shall be no less than 4:1*.

Sidewalks, paths, and open spaces. Horizontal illumination at grade level shall be no less than 0.5 footcandles. Vertical illumination at six feet above grade level shall be no less than 1.0 footcandles. Light sources shall have an initial output of no more than 1000 lumens, generally. The ratio of average to minimum illumination shall be no greater than 5:1*.

Parking lots. Illumination at pavement level shall be no less than 0.5 footcandles for low-to-moderate activity areas and 1.0 footcandles for higher-activity areas. The ratio of average to minimum illumination shall be 5:1*.

Building entrances. Illumination shall be maintained between 2.5 and 5.0 footcandles.

* The ratio of average to minimum illumination may be higher in peripheral locations, such as adjacent to natural areas or community residential edges, where decreased illumination along the site boundary would be more appropriate.
• Blank wall spans and other indistinct features should not be lighted except as needed for safety.

• “Close-in” lighting can be used to accent the textures of building finishes such as stone and brick.

**Integrate lighting equipment into the building design.**

• Fixtures and wiring should be concealed by architectural elements. This ensures that equipment has a minimal visual impact during the daytime. Alternatively, building-mounted fixtures shall be designed as integral features consistent with the building’s geometry and architectural style.

**Only use site lighting in strategic locations.**

• Landscape lighting may be used selectively to highlight specimen trees and plantings and to define major building entrances.

• Fixture selection should strike a balance between minimizing the number of units required to accomplish the desired effect and the ability to conceal light sources from view. In general, lamping for landscape illumination should be metal halide.

**Provide safe, appropriate and attractive lighting along paths and streets.**

• Pedestrian-scale, pole-mounted lights shall be provided along streets, sidewalks, and paths.

• Generally, spacing between pedestrian-scale fixtures shall be no greater than 100 feet nor less than 25 feet.

• Where lighting is needed along the vehicular way, a combination fixture shall be used to light the street and adjacent pedestrian way or open space, with a taller fixture lighting the street and a pedestrian-scale fixture lighting the adjacent sidewalk, path, or open space.

**Provide lighting at the perimeter and in the interior of parking areas.**

• Light fixtures should be of the least height to provide the desired lighting level and shall be located in landscaping islands.

• Building-mounted lights may be used in combination with pole-mounted lights to provide adequate illumination in those portions of the parking lot near a building.

**Incorporate appropriate lighting in open spaces.**

• Fixtures within open spaces. Lighting in open spaces shall be provided through pedestrian-scale, pole-mounted lighting, lighted bollards and, where practical, building-mounted lighting.

**Integrate building entry lighting into the building and site design.**

• Grand building entrances, such as those which front on a plaza, shall include pedestrian-scale pole-mounted fixtures and building-mounted fixtures.

• More modest building entrances may include only building-mounted fixtures.
Planting Materials

Planting design is an important component in enhancing the appearance of the campus. Plant selection, quality of plant material, and ongoing maintenance should be consistent throughout the campus. Plant materials used for landscaping purposes under these guidelines shall be selected from the University’s Recommended Plant List.

Design and select plantings for water conservation, drainage and maintenance.

- Planting and irrigation design shall promote water conservation through selection of plant materials with low water requirements by grouping plants with similar water needs together and by utilizing water-conserving irrigation design and equipment.
- High maintenance areas shall be limited to building entrances and other easily accessible, prominent locations.
- Yard inlets and area drains in landscape areas shall be located in grass areas, where practical, instead of planting beds.

Use recommended plants appropriate to their location and function.

- The recommended plant list in Appendix A classifies planting materials as: ornamental tree, understory tree, canopy tree, ground cover and vines, shrubs, ornamental grasses, and annuals.
- The use of native trees and trees with spring and/or fall color is encouraged.
- All trees shall be hand-selected by the University’s representative at the growing source to ensure consistent quality.

Use trees to provide shade; define edges of streets, paths, and open spaces; and to provide a sense of human scale.

- Street trees shall be located within the planting strip between the sidewalk and curb. The strip shall be of sufficient width to prevent damage to hardscape due to root spread.
- Streetscapes with building setbacks of 25 feet or more (measured from curb) shall include canopy trees to reinforce the intended street width proportions. Streets with narrow building setbacks may use ornamental or understory trees.
- Off-street paths shall be lined with ornamental trees, at a minimum, and spaced between 40-80 feet.
- Trees located within open spaces shall be arranged consistently with the intended geometry of the open space and shall be located so as to preserve intended views across or through the space.
  » Larger open spaces should include a combination of understory and canopy trees.
  » Understory trees are sufficient for most plazas.
  » Sufficient room shall be provided in tree wells to accommodate the expected root spread of the tree type.
- Understory and canopy trees shall be used in surface parking areas to provide shade and reduce heat islands.
  » Parking spaces should generally be within 100 feet of an understory or canopy tree.
Use shrubs to define space.

- Shrubs should be used as needed to define the edges of open spaces but should not interrupt the open flow of grassed areas.
- Shrub materials should be selected that perform well with limited pruning.
- All shrubs shall be planted a minimum of five feet from buildings for ease of building maintenance and window cleaning.

Conserve existing plantings.

- Designers, contractors, and all vendors working on campus should respect and preserve existing trees to the greatest extent practicable.

Site Furnishings

Provide site furnishings consistent with the type and level of activity within the open space, streetscape, or path.

- Site furnishings at building entrances or within building-specific outdoor spaces may vary from standard specifications but shall be designed in harmony with one another and the character of the building.
- Trash receptacles shall be provided near street intersections, buildings entrances, along paths, and the edges of open spaces (or as otherwise necessary due to the nature of the space).
- Benches shall be provided along streets, paths, the perimeter of open spaces, and as otherwise desired according to the function of the space.
  - Benches may be grouped at larger plazas, building entrances, and features where larger groups may gather.
  - All benches should be placed facing pedestrian routes to maximize the “people watching” aspect of the open space.
- Bollards to control access should be chosen appropriate to the traffic and context.
  - Steel bollards and chain may be used to edge lawns and direct pedestrian traffic along perimeter paths.
  - Precast concrete bollards may be used to control vehicular access.
  - Removable steel bollards may be used along multi-use paths that accommodate service and emergency vehicles.
  - The design and color of bollards shall be consistent with the character of surrounding building(s) and other site furnishings.
  - Where temporary or adjustable barriers are needed, a simple post and chain type barrier should be used.

Use shrubs to define space.

- Shrubs should be used as needed to define the edges of open spaces but should not interrupt the open flow of grassed areas.
- Shrub materials should be selected that perform well with limited pruning.
- All shrubs shall be planted a minimum of five feet from buildings for ease of building maintenance and window cleaning.

Conserve existing plantings.

- Designers, contractors, and all vendors working on campus should respect and preserve existing trees to the greatest extent practicable.

Site Furnishings

Provide site furnishings consistent with the type and level of activity within the open space, streetscape, or path.

- Site furnishings at building entrances or within building-specific outdoor spaces may vary from standard specifications but shall be designed in harmony with one another and the character of the building.
- Trash receptacles shall be provided near street intersections, buildings entrances, along paths, and the edges of open spaces (or as otherwise necessary due to the nature of the space).
- Benches shall be provided along streets, paths, the perimeter of open spaces, and as otherwise desired according to the function of the space.
  - Benches may be grouped at larger plazas, building entrances, and features where larger groups may gather.
  - All benches should be placed facing pedestrian routes to maximize the “people watching” aspect of the open space.
- Bollards to control access should be chosen appropriate to the traffic and context.
  - Steel bollards and chain may be used to edge lawns and direct pedestrian traffic along perimeter paths.
  - Precast concrete bollards may be used to control vehicular access.
  - Removable steel bollards may be used along multi-use paths that accommodate service and emergency vehicles.
  - The design and color of bollards shall be consistent with the character of surrounding building(s) and other site furnishings.
  - Where temporary or adjustable barriers are needed, a simple post and chain type barrier should be used.
- Furniture for outdoor dining shall be durable steel tables and chairs.
  - In secure or restricted areas, weighted free-standing tables and stackable chairs may be used to allow flexibility in seating arrangements.
  - In unsecured areas, steel tables with permanently fixed seats should be used. Where fixed seating is used, an appropriate portion of the overall seating shall be wheelchair accessible.

 PROVIDE PUBLIC ART IN PROMINENT OPEN SPACES.

- Sculptures and other forms of public art should be located in harmony within the design and geometry of the space.

FENCES, WALLS AND SCREENS

DESIGN AND USE FENCES AND WALLS AS NEEDED TO SERVE THEIR INTENDED FUNCTION.

- Fences and walls serve one or more of the following purposes: to define transitions between public, semi-public, and private zones; to provide visual screening from service/support areas; or to retain soil.

- In addition to their primary function, walls within open spaces should also be considered for opportunities to provide seating, where appropriate.

- Generally, a combination of decorative fence/wall, and shrubs, should be used in highly visible locations.

- Non-decorative fencing (such as chain-link) used to restrict access shall only be used in areas away from streets and paths and areas not visible from off-campus.

- Retaining walls, where practical, should be designed to provide seating in gathering places and other high-traffic areas.

- Fencing required for sports and recreation areas shall be of a design, opacity, and height appropriate to the function.

- Where used, all chain-link fencing shall be vinyl-coated, black.

CHOOSE FENCE OR WALL MATERIALS ACCORDING TO CONTEXT.

- When located within an open space with pre-existing site walls, consistent wall materials should be used.
• In the absence of precedents, wall design and materials should complement the materials of neighboring buildings, especially wherever the wall connects to a building.
• Segmental block retaining wall systems are prohibited.
• Acceptable materials are:
  » Stone veneer over poured in place concrete or CMU
  » Brick veneer over poured in place concrete or CMU
  » Precast concrete veneer over poured in place concrete or CMU
  » Poured in place concrete with sandblast or parged finish.
• Wall caps should be stone, precast concrete, or brick.

Screen loading and service areas from public view.
• Loading and service areas should be screened through a combination of their location, landscaping, and fencing or walls.

• Above ground utilities and building appurtenances, such as air conditioners and similar building equipment, shall be screened from public view and access restricted by walls or fencing compatible with the style, material, and color of the adjacent building(s).
• Uses requiring security fencing shall be located away from community edges where practical.
  » For locations within public view, masonry walls, black "ornamental" fencing, or other attractive fencing systems should be used for security purposes rather than razor-wire and similarly unpleasant, security fencing.
  » Where public views are effectively screened by landscaping, buildings, or other methods, fencing may be black, vinyl-coated, chain-link.

Utilities
Generally, all new utilities lines shall be placed underground for new building projects. For new construction projects in locations where surrounding buildings are served by above-ground utilities, Facilities Administration and Planning shall be consulted.

Place above-ground utilities and utility appurtenances to minimize their visibility.
• Where above-ground utilities and appurtenances are necessary, their locations shall be approved by Facilities Administration and Planning.
• Where location is not sufficient to minimize public views, screening shall be provided consistent with screening concepts above.
Sustainable Design

The following site and landscape design guidelines support the enhancement of the campus open space system as described in the Campus Master Plan.

The landscape designer for projects creating new or altering existing campus open spaces shall be a Landscape Architect registered in the State of Alabama.

Sustainable Site Planning Guidelines

Select infill sites and avoid new construction in natural areas wherever possible.

- New building sites shall be consistent with the Campus Master Plan.
- Previously developed/disturbed areas should be prioritized above undisturbed areas for new building sites.
- New building sites should be chosen with the intent of minimizing extension of infrastructure.

Provide a plan that mitigates environmental impacts.

- An Erosion and Sedimentation Control Plan shall be developed indicating the strategies to be used during construction to minimize soil erosion, sedimentation into storm sewers and/or receiving streams, and dust and particulate pollution.
- Land disturbance within 100 feet of designated wetlands shall be avoided. Vegetated buffers in proximity to wetlands should be installed or retained. State and/or local mitigation requirements shall be met or exceeded.
- Development of land less than five feet above designated 100-year floodplains should be avoided.
- Disturbance of threatened and endangered species habitats shall be avoided.
- Natural areas should be conserved, and if disturbed during construction, such areas shall be restored.
- For previously undisturbed sites, limits of disturbance including construction staging areas, should be established.
- Native or adapted plant species should be used for low maintenance, water efficiency, and pest tolerance.
- Construction plans should include strategies for maintenance access that avoid unnecessary disturbance.

Develop site features to minimize impacts to site microclimates.

- Wherever a flat roof is used, a green roof should be considered or EPA Energy Star® Guidelines followed.

Design for shade.

- Shade should be maximized with trees, trellises, and canopies to reduce heat islands.
- Where applicable, large paved areas should be located on the north side of buildings to allow shading by the building. Otherwise, parking areas should be shaded up to 50% within five years.
Water Efficiency Guidelines

Reduce stormwater runoff impacts on the quantity and quality of campus water resources.

- The creation of new impervious surfaces should be minimized or mitigated.
  - Flat or low pitch roofs should be vegetated, preferably with native or adapted species.
  - Permeable paving materials should be considered for drives, surface parking, and along the outside lanes of multi-use paths.
- Where feasible, rainwater should be collected and stored for reuse or slow release.
- Increases in stormwater flows leaving the site should be prevented. Infiltration should be provided on all sites.
- Landscaping with high absorption is preferred.
- Bio-retention basins, swales, or rain gardens should be used to reduce the need for stormwater utilities and detention basins.

Minimize outdoor and indoor water consumption.

- The following should be considered to reduce potable water consumption in landscape irrigation:
  - Drought tolerant planting and turf mixes.
  - High-efficiency irrigation systems where irrigation is necessary.
  - Native vegetation beds and meadows that require no irrigation, pesticide use, and/or mowing.
  - Non-potable sources, such as ponds and collected rainwater, for irrigation needs.
- The following should be considered to reduce water consumption in buildings:
  - Low-flow, power-assisted toilets, including dual-flushing toilets in women’s restrooms.
  - Showers and faucets with flow restrictors meeting or exceeding the Energy policy Act of 1992, including infrared sensors on faucets.
  - Washing machines that comply with EPA Energy Star® Program.

Energy Conservation

An integrated approach to organization and design of buildings, open spaces and accessibility will reduce energy consumption through:

- Maintaining a walkable/bikeable, less automobile-dominant environment to reduce air pollution and energy consumption.
- Use of transit systems, bikeways, and developed pedestrian ways as supportive of the primary ordering system for campus development.
- Establishment of building configurations, orientation, and massing to maximize availability of natural ventilation, daylighting, and winter insolation.
- Placement of higher building densities along the campus heated/chilled water system to increase future energy source options.
- Incorporation of energy-conservation goals for all new construction and major remodeling, including potential use of passive and active solar systems.
Consider gray water systems for water collection and conveyance to reduce stormwater impacts and consumption of potable water.

- Potential reuse of collected wastewater from sinks, mechanical condensate, and drinking water fountains in toilet/urinal flushing should be considered.
- Use of alternative wastewater treatment methods should be evaluated to reduce demand on campus waste treatment operations including systems to treat black water: composting toilets, living machines, and constructed wetlands.
- The public health department should be consulted to determine parameters for approval.

**Material and Resource Conservation**

**Maintain and expand campus recycling programs.**

- Easily accessible recycling stations for collection and separation of paper, cardboard, glass, plastics, and metals shall be provided.
  - Recycling stations should be provided at convenient locations inside and outside of buildings, and in events areas, parking lots and plazas.
  - Recycling stations should be sized to accommodate the University's standard recycling containers.

**Reduce Construction and Demolition Waste.**

- To reduce construction and demolition waste from University projects, the following should be considered:
  - Reuse of existing structures in lieu of new construction.
  - Recycling and salvage of demolition waste.
- Future reuse should be considered when determining floor-to-floor heights and planning modules. Open environments, flexible systems furniture, and modular partitions for office areas are encouraged.
- Projects should be designed to be recyclable, using products that can be easily disassembled and/or recycled.
- Durable materials that extend the life of the project are preferred.
- Carpet, ceiling tiles, and other products from companies with reclamation programs to take back products after their useful life are preferred.
- A construction waste management plan shall be provided by the contractor to reduce construction waste going to landfills.
Design Guide

When selecting materials, consider both local and global impacts.

• Locally produced materials and locally manufactured products made from raw materials that are locally extracted are preferred.

Favor durable, recycled, recyclable, renewable, and biodegradable materials.

• Durable products with a long service life are preferred. Evaluate initial cost, service life, and annual maintenance costs over 50-year life cycle for comparison with other products.

• The use of recycled (20% post-consumer content or 40% post-industrial content) materials should be optimized.

• Recyclable (wood, concrete, asphalt, brick, drywall, metals, etc.) and salvaged materials are encouraged.

• Composite materials that are costly to recycle should be avoided.

• Renewable materials such as natural linoleum, bamboo, wood, and wheatboard from millwork substrates are encouraged.

• Use biodegradable materials where appropriate, such as the use of earth dikes and straw bales for soil and erosion control.

Avoid ozone depleting substances and materials with toxic constituents, including:

• CFCs and HCFCs in refrigerants and fire suppression systems.

• CCA (pressure-treated wood), mercury (thermostats), and chrome (plumbing fittings).

Energy Efficiency

Reduce total energy consumption of existing and new buildings.

• Dependence on mechanical heating and cooling should be minimized through:
  » Modelling energy performance to include interaction of multiple strategies.
  » Optimizing R-values. Exterior wall assemblies should be a minimum of R-19, and roof assemblies should be at least R-30.
  » Use of double-glazed glass units with a low-E coating, argon-filled with a U-factor of 0.27 or less.
  » Use of passive solar design strategies and incorporating thermal mass within buildings.

Choose operationally-efficient systems.

• Projects shall comply with minimum energy efficiency prescribed in ASHRAE Standard 90.1-2001.

• Energy Star® products should be used wherever appropriate: equipment, transformers, and appliances. Energy-efficient equipment with premium efficiency motors acceptable to local utility authority is recommended.

• High-efficiency lighting with electronic ballasts is preferred.

• Sensors should be installed to control lighting in spaces not regularly occupied

• Over-sized equipment should be avoided so that equipment runs at peak efficiency.
Demand-controlled ventilation strategies for classrooms and other spaces with large occupancy swings should be employed.

Heat recovery systems that capture and reuse waste heat should be used.

*Adhere to Alabama Building Energy Code.*


*Harness site energy.*

- Mixed-mode natural ventilation and operable windows are encouraged, in combination with micro-switches are encouraged to control ventilation and cooling in residential buildings.
- Air economizers are required.
- The feasibility of solar hot water heaters should be assessed.
- Natural daylighting should be used in combination with sensors and light modulation features.

*Monitor performance of building systems for energy efficiency.*

- New buildings shall be fully commissioned by a third party commissioning agent (HVAC, building control systems, duct work and piping insulation, lighting controls, heat recovery, and automatic sensors). The commissioning agent should be involved early in the design process.
- The commissioning agent shall provide a manual that describes the process for re-commissioning the building.
- Building operations training shall be provided and should be recorded for future training. This training should include procedures for start-up, normal operation, shutdown, unoccupied operation, seasonal changeover, manual operation, controls set-up and programming, troubleshooting, alarms, systems interaction, adjustments, optimizing energy conservation, special maintenance and replacement sources, use of operations and maintenance manuals, and review of control drawings and schematics.

Monitor performance of building systems for energy efficiency.
**Abutting.** Touching along a common edge, such as a property line or similar site boundary.

**Adjacent.** Abutting or separated only by a street, path, or open space.

**Access Control.** An environmental design strategy intended to promote safety by directing or restricting vehicular, pedestrian, or bicycle access to a limited number of surveillable, manageable locations.

**Arcade.** A covered passageway supported by a row of columns or piers typically at the edge of a building.

**Background building.** A building with a façade designed to frame a streetscape, open space, or viewshed. The façade of a background building may frame but does not visually compete with that of a foreground building.

**Base, Middle and Cap.** The three divisions of a building façade, each demarcated by a change in materials or plane and/or an expression line.

- **Base.** The lowest division of a façade, which extends upward from the ground. For one and two-story buildings, the Base extends at least two feet from the ground. For three-story or taller buildings, the Base is at least the height of the ground floor.

- **Middle.** The division of the façade between the Base and Cap. The Middle is generally the largest of the three divisions.

- **Cap.** The uppermost division of a façade. For one-story buildings, a cornice is sufficient as a Cap. For flat roof buildings, the height of the Cap increases with the height of the building and may include the height of the upper floor.

**Bio-retention.** An engineered process to manage stormwater runoff, using the chemical, biological, and physical properties afforded by plants, microbes, and soil. Bio-retention is used to control stormwater and improve water quality through removal of pollutants and nutrients associated with runoff.

**Blackwater.** Wastewater from toilets, kitchen sinks, and dishwashers and containing higher levels of nitrogen.

**Build-to Line.** A requirement for a building to be set up to a street, path, or open space to ensure proper enclosure. Certain variations are permitted as described in these guidelines.

**Canopy Tree.** A large tree with a ten foot or greater understory at maturity, used to create enclosure and provide shade.

**Community Edge.** An area of interface between the Campus and the surrounding community.

**Courtyard.** A semi-public open space enclosed on three sides or wholly enclosed by buildings or walls. Courtyards may besoftscaped or hardscaped.

**Crime Prevention through Environmental Design (CPTED).** A multidisciplinary approach intended to promote safety and deter criminal behavior through the design of the built environment.

**Enfront or Front on.** To be aligned with a frontage or build-to line to provide definition to an adjoining space.

**Foreground Building.** A building designed to reflect importance often located at the termination of a vista or other prominent site.
**Formal.** A design style that focuses on generally symmetric, axial relationships between buildings and open spaces.

**Passage or Path.** A non-vehicular corridor accommodating one or more modes of circulation, including sidewalks and multi-use paths and trails.

**Pedestrian Table.** A pedestrian crossing area raised slightly above the surface of the vehicular way it crosses.

**Picturesque.** A landscape design style that focuses on informal and generally organic relationships between buildings and open spaces.

**Frontage.** That portion of a building or building site which borders a street, path, or open space.

**Gray Water.** The wastewater produced from baths and showers, clothes washers, and lavatories.

**Green Roof.** A roof partially or completely covered with plants to mitigate stormwater runoff and control temperature variations within the building.

**Lawn.** A grassed area between the front of a building, or building group, and a street.

**Leadership in Energy and Environmental Design (LEED).** A program of the U.S. Green Building Council establishing a rating system to promote environmentally sustainable design and construction practices.

**Natural Surveillance.** An environmental design strategy intended to deter crime by the arrangement of physical features, activities, and people to maximize visibility and interaction among users of private and public spaces.

**Ornamental Tree.** A tree, with a small understory at maturity, generally used to define edges or to articulate a space, but not necessarily to provide shade.

**Plaza.** A public open space enclosed on two to three sides by buildings or walls. Plazas are typically hardscaped and can serve as a gathering or queue space for adjacent buildings.

**Quadrangle or Quad.** An open space enclosed on four sides by buildings or, at a minimum, mostly enclosed by buildings and having four defined edges.

**R-Value.** The measure of resistance to conductive heat transfer of building materials.

**Rain Garden.** A shallow depression, typically planted with native plants, strategically located to collect, infiltrate, and filter stormwater draining from impervious surfaces to minimize negative impacts of excessive runoff.
**Renewable Materials.** Building materials derived from sources that can be replenished within a ten-year time frame.

**Streetscape.** The composition of elements in a street which create its three-dimensional form, including building frontages, landscaping, street furniture, the vehicular travelway, and facilities for pedestrians and bicycles.

**Swale.** A depression in the landscape used to temporarily convey, store, or filter runoff. To prevent erosion, a swale is often lined with rip-rap or native grasses.

**Terminus, Visual.** The location of a building, structure or object at the end of a street, path, or the long axis of an open space.

**Territorial Reinforcement.** An environmental design and maintenance strategy that promotes safety by providing environmental cues about the relative level of public accessibility of spaces or buildings. Territorial reinforcement also relies on regular property maintenance to lend the impression that the building or space is frequently occupied, surveilled, or otherwise tended to.

**Transition Zones.** Portions of a site arranged to create appropriate relationships between public, semi-public, and private spaces, whether within a building, open space, or both. A lawn is considered a semi-public space connecting a public path to the private spaces within a building.

**U-value.** The measure of heat transmission through a part of building or through building materials.

**Understory Tree.** A tree, with a six to ten foot understory at maturity, used to define edges and provide shade.

**U.S. Green Building Council.** A national coalition of building industry leaders promoting environmentally responsible design and construction practices. The USGBC is responsible for creation of the LEED rating system.

**Viewshed.** A view created by any or a combination of landforms, landscaping, streets, paths, and buildings, often terminating in a panoramic view.

**Vista.** A view, as seen through a grouping of objects or structures which frame the view, often terminating in a specific focal point.

**Volatile Organic Compound (VOC).** Carbon compounds found in certain building materials that have negative impacts on indoor air quality and the Earth’s atmosphere.
Project Team

KPS Group, Inc.
Darrell Meyer Principal in Charge
Amy Smith Landscape Architect
Jason Fondren Planner
Ben Wieseman Landscape Architect

Skipper Consulting, Inc.
Darrell Skipper Transportation Engineer
Mickey Hall Transportation Planner

Comprehensive Facilities Planning, Inc.
Brian L. Bell Principal
David C. Marsh Principal

Lambert Ezell Durham Architecture + Interior Design
Donald E. Lambert Architect
Lindon E. Ezell Architect
Calvin Durham Architect