The 36th Annual

STATEWIDE MATHEMATICS CONTEST

First Round: February 25, 2017 at Regional Testing Centers Second Round: April 8, 2017 at The University of North Alabama

ALGEBRA II WITH TRIGONOMETRY EXAM

Construction of this test directed by
Miranda Bowie and Ashley Johnson, The University of North Alabama

This test consists of 50 multiple choice questions. The questions have not been arranged in order of difficulty. For each question, choose the best of the five answer choices labeled A, B, C, D and E.

INSTRUCTIONS

The test will be scored as follows: 5 points for each correct answer, 1 point for each question left unanswered and 0 points for each wrong answer. (Thus a "perfect paper" with all questions answered correctly earns a score of 250, a blank paper earns a score of 50, and a paper with all questions answered incorrectly earns a score of 0.)

Random guessing will not, on average, either increase or decrease your score. However, if you can eliminate one or more of the answer choices as wrong, then it is to your advantage to guess among the remaining choices.

- All variables and constants, except those indicated otherwise, represent real numbers.
- Diagrams are not necessarily to scale.

We use the following geometric notation:

- If A and B are points, then: \overline{AB} is the segment between A and B \overline{AB} is the line containing A and B \overline{AB} is the ray from A through B AB is the distance between A and B
- If A is an angle, then $m \angle A$ is the measure of angle A in degrees.
- If A and B are points on a circle, then $\hat{A}\hat{B}$ is the arc between A and B.
- If A and B are points on a circle, then \widehat{mAB} is the measure of \widehat{AB} in degrees.
- If $\overline{AB} \cong \overline{CD}$, then \overline{AB} and \overline{CD} are congruent.
- If $\triangle ABC \cong \triangle DEF$, then $\triangle ABC$ and $\triangle DEF$ are congruent.
- If $\triangle ABC \sim \triangle DEF$, then $\triangle ABC$ and $\triangle DEF$ are similar.
- If ℓ , m are two lines, then $\ell \perp m$ means ℓ and m are perpendicular.

Why Major in Mathematics?

What sorts of jobs can I get with a mathematics degree? Examples of occupational opportunities available to math majors:

•	Market	Research	Analyst
•	Market	research	Anaivsu

• Air Traffic Controller

• Climate Analyst

• Estimator

• Research Scientist

• Computer Programmer

• Cryptanalyst

Professor

• Pollster

• Population Ecologist

• Operations Research

• Data Mining

• Mathematician

• Meteorologist

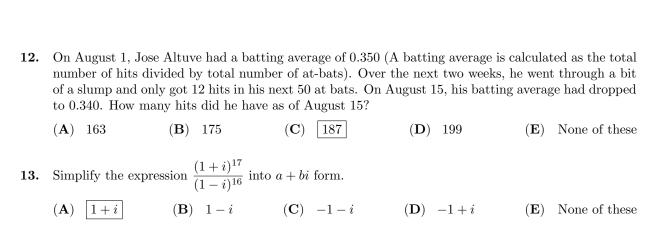
Medical Doctor

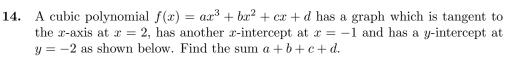
Lawyer

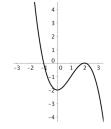
Actuary

• Statistician

Where can I work? What sorts of companies hire mathematicians? Well just to name a few...

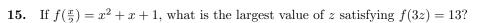

- U.S. Government Agencies such as the National Center for Computing Sciences, the National Institute of Standards and Technology (NIST), the National Security Agency (NSA), and the U.S. Department of Energy.
- Government labs and research offices such as Air Force Office of Scientific Research, Los Alamos National Laboratory, and Sandia National Laboratory.
- Engineering research organizations such as AT&T Laboratories Research, Exxon Research and Engineering, and IBM Research.
- Computer information and software firms such as Adobe, Google, Mentor Graphics, Microsoft, and Yahoo Research.
- Electronics and computer manufacturers such as Alcatel-Lucent, Hewlett-Packard, Honeywell, Philips Research, and SGI.
- Aerospace and transportation equipment manufacturers such as Boeing, Ford, General Motors, and Lockheed Martin.
- Transportation service providers such as FedEx Corporation and United Parcel Service (UPS).
- Financial service and investment management firms such as Citibank, Morgan Stanley, and Prudential.


A Mathematics Major isn't just for those wanting to be Mathematicians!


- The top scoring major on the Law School Entrance Exam (LSAT) is Mathematics (Source: Journal of Economic Education)
- Mathematics is also a top 5 scoring major on the Medical School Entrance Exam (MCAT) (Source: American Institute of Physics)

Study in the field of mathematics offers an education with an emphasis on careful problem solving, precision of thought and expression, and the mathematical skills needed for work in many other areas. Many important problems in government, private industry, and health and environmental fields require mathematical techniques for their solutions. The study of mathematics provides specific analytical and quantitative tools, as well as general problem-solving skills, for dealing with these problems. The University of North Alabama offers an undergraduate degree in Mathematics and has many great things to offer, including a new Mathematics Fellow program, an active undergraduate research group and a new Dual Degree Engineering program. For more information, go to www.una.edu/math.

1.	Simplify $\left[(81)^{3/4} \right]$	$\left(\frac{9}{25}\right)^{-3/2} + (153)^0 \left(\frac{1}{7}\right)^{-3/2}$	$)^{-1} (625)^{3/4} \Big]^{-1/3}$.			
	(A) $\frac{1}{100}$	$(\mathbf{B}) \frac{7 + \sqrt[3]{7}}{35}$	(C) $\frac{7 + \sqrt[3]{49}}{35}$	$(\mathbf{D}) \boxed{\frac{1}{10}}$	(E) None of these	
2.	The function $f(x)$	$= \frac{x}{x^2 + 1} \text{ is:}$				
	$(\mathbf{A}) \boxed{\mathrm{Odd}} (\mathbf{B})$	Even (C) Neithe	r even nor odd (\mathbf{D})	Both even and odd	(E) None of these	
3.	Two non-zero real	numbers, a and b , s	satisfy $ab = a - b$. W	hat is the value of (a)	/b) + (b/a) - ab?	
	(A) -2	(B) $-\frac{1}{2}$	(C) $\frac{1}{3}$	$(\mathbf{D}) \frac{1}{2}$	(E) 2	
4.			a nonzero first term, ad the common ratio.	the sum of the first (6 terms is equal to 9	
	(A) $-\frac{7}{4}$	(B) -1	(C) 2	$(\mathbf{D}) \frac{8}{3}$	(E) None of these	
5.	possible answer ch		study and are going	hoice quiz where eac to have to guess at r		
	$(\mathbf{A}) \boxed{\frac{1}{64}}$	(B) $\frac{1}{256}$	(C) $\frac{15}{1024}$	(D) $\frac{3}{1024}$	(E) None of these	
6.	What is the shorte	est distance from po	int $(-2,3)$ to the circ	cle given by $(x-2)^2$	$+ (y+5)^2 = 5?$	
	(A) 2	(B) 3 (C	C) $3\sqrt{5}$	$(\mathbf{D}) 4\sqrt{5}$	(E) None of these	
7.	Find the sum of the	ne squares of all real	roots of the function	$f(x) = x^4 e^x - 4e^x - 4e^x$	$-3x^2e^x$.	
	(A) 2	(B) 4	(C) 6	(\mathbf{D}) 8	(E) None of these	
8.	Find the absolute	value of the sum of	the solutions to the ϵ	equation $(4x - 6)(x +$	-3) = 14.	
	$(\mathbf{A}) \boxed{\frac{3}{2}}$	$(\mathbf{B}) \frac{5}{2}$	(C) 3	(D) 16	(E) None of these	
9.	For how many inte	egers x in $\{1, 2, 3,, 2, 3,\}$	$(99,100)$ is $x^2 + x^3$ e	qual to the square of	an integer?	
	(A) 7	(B) 8	(C) 9	(D) 10	(E) None of these	
L 0.	The inequality -3	$ x+7 \ge -27$ has a	solution set of the fo	orm $[a, b]$. Find $b - a$.		
	(A) 16	$(\mathbf{B}) \boxed{18}$	(C) 48	(D) 54	(E) None of these	
l 1.	The polynomial					
	$p(x) = x^7 - 6x^6 - 12x^5 + 200x^4 - 720x^3 + 1248x^2 - 1088x + 384$					
	has 2 as a root of	multiplicity 6. Find	another root of $p(x)$			
	(A) -32	$(\mathbf{B}) \boxed{-6}$	(\mathbf{C}) 6	(D) 32	(E) None of these	

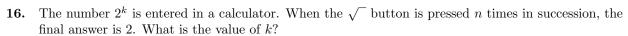

$$(A) -5$$

$$(\mathbf{B})$$
 -3

$$(\mathbf{C})$$
 $\boxed{-1}$

$$(\mathbf{D}) \quad 0$$

(E) None of these


(A)
$$-\frac{2}{3}$$
 (B) $-\frac{1}{2}$ (C) $\left|\frac{1}{2}\right|$ (D) $\frac{2}{3}$

(B)
$$-\frac{1}{2}$$

(C)
$$\left[\frac{1}{2}\right]$$

$$(\mathbf{D}) \quad \frac{2}{3}$$

 (\mathbf{E}) None of these

(C)
$$n^2$$

(**D**)
$$2^n$$

(E) None of these

I.
$$\sqrt{x^2 + 9} = x + 3$$

II.
$$\log(xy) = \log(x) + \log(y)$$

III.
$$3(2x+1)^{2/3} = (6x+3)^{2/3}$$

 (\mathbf{E}) III only

18. How many times does the graph of the function
$$f(x) = \frac{x^3 - x^2 - 5x - 3}{x^3 + 4x^2 - 3x - 18}$$
 cross its horizontal asymptote(s)?

$$(\mathbf{A}) \quad 0$$

$$(\mathbf{C})$$
 2

None of these

19. What is the minimum value of the function
$$f(x) = x - 3\sqrt{x} + 9$$
 on its domain?

(**A**) 1.5

$$(\mathbf{B}) \quad 2.25$$

$$(C)$$
 4.5

(D)
$$6.75$$

 (\mathbf{E}) None of these

$$(x-1)(6x^2-19) + (x-4)(4x^2-11) + (6x^2-19)(x-7) = 0.$$

$$(\mathbf{B})$$
 7

(C)
$$-\frac{49}{4}$$

(D)
$$\frac{49}{4}$$

(B) 7 (C) $-\frac{49}{4}$ (D) $\frac{49}{4}$ (E) None of these

21. How many integers are in the solution set of the inequality
$$\frac{2x - \frac{x^2 + 19}{x}}{x} < 0$$
?

(A) 8 (B) 9 (C) 10 (D) Infinitely many

(**A**) 8

(**E**) None of these

	(\mathbf{A}) 5	(\mathbf{B}) 3	(\mathbf{C}) 0	(\mathbf{D}) -5	(E) None of these
23.	You randomly ord other?	er the letters A P R	I L. What is the pr	obability that the I a	and L are next to each
	(A) $\frac{1}{30}$	(B) $\frac{1}{15}$	(C) $\frac{1}{5}$	$(\mathbf{D}) \boxed{\frac{2}{5}}$	(E) None of these
24.	Consider the seque		$= \frac{6}{5}, a_3 = \frac{24}{25}, a_4 = \frac{2}{25}$	$\frac{24}{15}, a_5 = \frac{144}{125}, \dots$	
	Which of the follo	wing is the correct e	xpression for a_n ?		
	$(\mathbf{A}) a_n = \frac{(n)!}{5^n}$		(B) $a_n = \frac{(n-1)!}{5^{n-1}}$		(C) $a_n = \frac{(n+1)!}{5^{n+1}}$
	$(\mathbf{D}) a_n = \frac{(n-1)^n}{5^{n+1}}$	<u>)!</u>		(E) None o	f these $a_n = \frac{(n+1)!}{5^{n-1}}$
25.	The graph of $f(x)$	$= \ln x$ is reflected as	cross the line $y = x$. What is the equation	on of the reflection?
				$(\mathbf{D}) y = \ln(-x)$	
26.	The equation $ 2x $	-1 x+5 = 6 has h	ow many solutions	which are less than z	ero?
	(\mathbf{A}) 0	(B) 1	(C) 2	(\mathbf{D}) 3	(E) None of these
27.	equation is $3x - 2$	y - 4 = 0.			ept as, the line whose
	$(\mathbf{A}) y = \frac{2}{3}x - 2$	$\mathbf{(B)} y = -\frac{2}{3}x - 2$	$\int (\mathbf{C}) y = -\frac{2}{3}x - \frac{2}{3}x - \frac{2}$	4 (D) $y = -\frac{3}{2}x - \frac{3}{2}$	2 (E) None of these
28.	Find the product	of the solutions of th	ne equation $(\sqrt{4-\epsilon})$	$\sqrt{15}$) $^x + \left(\sqrt{4 + \sqrt{15}}\right)^x$	$\left(\frac{1}{2} \right)^x = 8.$
	(A) -6	$(\mathbf{B}) \boxed{-4}$	(C) 1	(\mathbf{D}) 2	(E) None of these
29.					t, after t seconds, can ut or above a height of
	(\mathbf{A}) 6 seconds	(\mathbf{B}) 9 seconds	(\mathbf{C}) 12 seconds	(\mathbf{D}) 18 seconds	(\mathbf{E}) None of these
30.	_	you're actually suppo			t-tax total. She heard ercentage has Miranda
	(A) 18%	$(\mathbf{B}) \boxed{22\%}$	(C) 24%	(D) 30%	(E) None of these
31.	Find the remainde	er when x^3 is divided	1 by $x^2 - 2x + 1$.		
	$(\mathbf{A}) \boxed{3x-2}$	(B) $2x^2 - x$	(C) $5x-3$	$2 \qquad \qquad (\mathbf{D}) -2x$	$x^2 + x$ (E) 0

22. Find the sum of the smallest and the largest x-intercepts of the graph of $y = 3x^4 - 15x^3 + 18x^2$.

32.	For two positive numbers a and b , the sum $a+b$, the product $a \cdot b$, and the difference of squares a^2-b^2 equal the same non-zero number. What is a^2-b^2 ?				
	(A) 2	$(\mathbf{B}) \boxed{2 + \sqrt{5}}$	$(\mathbf{C}) \frac{3}{4} + \frac{\sqrt{5}}{2}$	$(\mathbf{D}) \frac{3}{4}$	(E) None of these
33.	become bored, he the same 3 jokes	e decides to tell exact. What is the mining	tly 3 jokes in ever num number of jol	y speech, and in no two kes that will accomplish	
	(\mathbf{A}) $\boxed{7}$	(B) 37	$(\mathbf{C}) 70$	(D) 105	(E) None of these
34.	The graphs of f	(x) and $g(x)$ are below	ow. Express $g(x)$	in terms of $f(x)$.	
	-8 -7 -6 -5 -4 -3 -2	4 3 2 1 0 -1 0 1 2 3 4 5 6	7 8 -5	-7 -6 -5 -4 -3 -2 -1 0 1 2 -2 -2 -3 -3	3 4 5 6 7 8
		Graph of $f(x)$		Graph o	$f_{\alpha(\alpha)}$
	$(\mathbf{A}) g(x) = f(x)$	1 ()		(B)	
	$(\mathbf{C}) g(x) = f(x)$,	$(\mathbf{D}) g(x) = 1$,	(\mathbf{E}) None of these
35.	Solve the equation	on $\frac{1 - 2x}{3x^2 + 6x + 12} =$	$\frac{1}{12 - 6x} - x^2 + 2x^3 - 2x^3$	$\frac{3}{16}$.	, ,
	$(\mathbf{A}) \boxed{-\frac{3}{4}}$	(B) $\frac{3}{4}$ (C)	$\frac{4+3\sqrt{2}}{2}$	(\mathbf{D}) No solution	(E) None of these
36.	Let $f(x) = x^7 +$	$ax^5 + bx^3 + 8x$, who	ere $f(1) = 2$ and f	f(2) = -8. Find $f(-2)$.	
	(A) -184	(B) -8	(C) 8	(D) 32	(E) None of these
37.		= 6 and $S(23) = 5$.			as of the integer n . For that $N = P(N) + S(N)$.
	(\mathbf{A}) 2	(\mathbf{B}) 4	(C) 7	(\mathbf{D}) $\boxed{9}$	(E) None of these
38.	Let $f(x) = 2x^2$	-5x - 3 and $q(x) =$	$x^{3/2} - 4\sqrt{x}$. Find	the sum of all the zero	os of $(q \circ f)(x)$.
	(A) 2.5	(B) 5	(C) 6.5	(D) 9	(E) None of these
20	Two operations	frand of any defined	$\log a^{\ell_r b} - a^2 - b^2$	2 and $a^{07}b - 4ab$ Find	507 (28-2)
39.	(A) -551	\propto and 70 are defined (\mathbf{B}) -100	$as \ a \otimes b = a - b$ $(\mathbf{C}) \boxed{100}$	and $a\%b = 4ab$. Find (D) 2000	(\mathbf{E}) None of these
	(11) 001	(D) 100	(6) [100]	(D) 2000	(E) Trone of these
40.	For $x > 0$, simply	ify the expression $\sqrt{}$	$1 + \left(\frac{1}{x} - \frac{x}{4}\right)^2.$		
	(A) $1 + \frac{1}{x} - \frac{x}{4}$	(B) $1 + \frac{1}{x}$	$+\frac{x}{4}$ (C)	$\frac{1}{x} + \frac{x}{4} \tag{D} \frac{1}{x}$	$-\frac{x}{4} \qquad \qquad (\mathbf{E}) \frac{2-x}{x-4}$

	$(\mathbf{A}) \boxed{\frac{4}{13}}$	(B) $\frac{17}{52}$	(C) $\frac{21}{52}$	(D) $\frac{1}{51}$	(E) None of these
42.	Solve the equat	tion $\frac{\sqrt{x+1} + \sqrt{x-1}}{\sqrt{x+1} - \sqrt{x-1}}$	$\frac{\overline{\frac{-1}{1}}}{\overline{\frac{-1}{1}}} = 3.$		
	(A) 0	(B) $\sqrt{5}$	(C) 9 (D)	No solution	(E) None of these $=\frac{5}{3}$
43.	Suppose the pa $a+b+c$.	arabola $y = ax^2 + b$	x + c passes through	the points $(-4, 12)$,	(-2,0) and $(2,12)$. Find
	(A) $\frac{3}{4}$	$(\mathbf{B}) \boxed{\frac{9}{2}}$	(C) $\frac{21}{2}$	(D) $\frac{45}{4}$	(E) None of these
44.	Suppose that	x-2 = p, where x	< 2. Which of the fo	llowing is equivalent	to $x-p$?
	(A) 2	(B) -2	(C) $2p-2$	$(\mathbf{D}) \boxed{2 - 2p}$	$\begin{bmatrix} & & & \\ & & 2p-2 \end{bmatrix}$
45.		per of distinct real, 1,9 is equal to the		we the property that	at the median of the five
	(A) 1	(B) 2	(C) 3	(\mathbf{D}) 4	(E) None of these
46.	Find the smalle	est y value at which	the graphs of $y = \frac{2}{}$	$\frac{-5x^2 - 10x}{x+3} \text{ and } y = \frac{-5x^2 - 10x}{x+3}$	=3x-1 intersect.
	$(\mathbf{A}) \boxed{-8.5}$	(B) -4	(C) -2.5	(D) -0.25	(E) None of these
47.	If $\frac{2a}{b^2 + 4} = 7$, a	and $\frac{1}{b^2 + 4} = 2$, find	d the value of $\frac{a+5}{b^2+4}$.		
	(A) 8.5	$(\mathbf{B}) \boxed{13.5}$	(C) 19	(D) 24	(E) None of these
48.	What is the slo vertex of the p	ope of the line which arabola $y = 3x^2 - 6$	h connects the center $6x + 5$?	of the circle $(x-4)$	$(y+1)^2 = 9$ and the
	(A) $-\frac{1}{3}$	$(\mathbf{B}) \boxed{-1}$	(C) $\frac{3}{5}$	$(\mathbf{D}) \frac{5}{3}$	(E) None of these
49.	How many ord	ered pairs (x, y) , where	here x and y are both	integers, satisfy the	e equation $\frac{1}{x} + \frac{1}{y} = \frac{1}{4}$?
	(A) 1	(B) 3	(C) 5	(\mathbf{D}) 9	(E) None of these
50.	Find the sum of	of the negative solu	tions to the equation	$(x^2 + 3x)^2 - 3x^2 =$	9x + 4.
	$(\mathbf{A}) \boxed{-7}$	(B) -6	(C) -4	(\mathbf{D}) -3	(E) None of these

41. A single card is drawn from a standard deck of 52 cards. What is the probability the card drawn is an Eight or a Heart? (Recall that a deck has four suits: Heart, Diamond, Spade, Club, each containing

an Ace, cards numbered 1 through 10, a Jack, Queen and King)